maskrcnn.py 18.4 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14
15

# Lint as: python3
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
17
"""Mask R-CNN configuration definition."""

Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
import dataclasses
Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
20
import os
from typing import List, Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21

22
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
23
24
25
26
27
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.beta.configs import common
from official.vision.beta.configs import decoders
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
from official.vision.beta.configs import backbones
Abdullah Rashwan's avatar
Abdullah Rashwan committed
29
30
31
32
33
34


# pylint: disable=missing-class-docstring
@dataclasses.dataclass
class TfExampleDecoder(hyperparams.Config):
  regenerate_source_id: bool = False
35
  mask_binarize_threshold: Optional[float] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
36
37
38
39
40


@dataclasses.dataclass
class TfExampleDecoderLabelMap(hyperparams.Config):
  regenerate_source_id: bool = False
41
  mask_binarize_threshold: Optional[float] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
  label_map: str = ''


@dataclasses.dataclass
class DataDecoder(hyperparams.OneOfConfig):
  type: Optional[str] = 'simple_decoder'
  simple_decoder: TfExampleDecoder = TfExampleDecoder()
  label_map_decoder: TfExampleDecoderLabelMap = TfExampleDecoderLabelMap()


@dataclasses.dataclass
class Parser(hyperparams.Config):
  num_channels: int = 3
  match_threshold: float = 0.5
  unmatched_threshold: float = 0.5
  aug_rand_hflip: bool = False
  aug_scale_min: float = 1.0
  aug_scale_max: float = 1.0
  skip_crowd_during_training: bool = True
  max_num_instances: int = 100
  rpn_match_threshold: float = 0.7
  rpn_unmatched_threshold: float = 0.3
  rpn_batch_size_per_im: int = 256
  rpn_fg_fraction: float = 0.5
  mask_crop_size: int = 112


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = False
  dtype: str = 'bfloat16'
  decoder: DataDecoder = DataDecoder()
  parser: Parser = Parser()
  shuffle_buffer_size: int = 10000
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
79
  file_type: str = 'tfrecord'
Abdullah Rashwan's avatar
Abdullah Rashwan committed
80
  drop_remainder: bool = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
81
82
  # Number of examples in the data set, it's used to create the annotation file.
  num_examples: int = -1
Abdullah Rashwan's avatar
Abdullah Rashwan committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106


@dataclasses.dataclass
class Anchor(hyperparams.Config):
  num_scales: int = 1
  aspect_ratios: List[float] = dataclasses.field(
      default_factory=lambda: [0.5, 1.0, 2.0])
  anchor_size: float = 8.0


@dataclasses.dataclass
class RPNHead(hyperparams.Config):
  num_convs: int = 1
  num_filters: int = 256
  use_separable_conv: bool = False


@dataclasses.dataclass
class DetectionHead(hyperparams.Config):
  num_convs: int = 4
  num_filters: int = 256
  use_separable_conv: bool = False
  num_fcs: int = 1
  fc_dims: int = 1024
Xianzhi Du's avatar
Xianzhi Du committed
107
108
109
110
  class_agnostic_bbox_pred: bool = False  # Has to be True for Cascade RCNN.
  # If additional IoUs are passed in 'cascade_iou_thresholds'
  # then ensemble the class probabilities from all heads.
  cascade_class_ensemble: bool = False
Abdullah Rashwan's avatar
Abdullah Rashwan committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135


@dataclasses.dataclass
class ROIGenerator(hyperparams.Config):
  pre_nms_top_k: int = 2000
  pre_nms_score_threshold: float = 0.0
  pre_nms_min_size_threshold: float = 0.0
  nms_iou_threshold: float = 0.7
  num_proposals: int = 1000
  test_pre_nms_top_k: int = 1000
  test_pre_nms_score_threshold: float = 0.0
  test_pre_nms_min_size_threshold: float = 0.0
  test_nms_iou_threshold: float = 0.7
  test_num_proposals: int = 1000
  use_batched_nms: bool = False


@dataclasses.dataclass
class ROISampler(hyperparams.Config):
  mix_gt_boxes: bool = True
  num_sampled_rois: int = 512
  foreground_fraction: float = 0.25
  foreground_iou_threshold: float = 0.5
  background_iou_high_threshold: float = 0.5
  background_iou_low_threshold: float = 0.0
Xianzhi Du's avatar
Xianzhi Du committed
136
137
138
  # IoU thresholds for additional FRCNN heads in Cascade mode.
  # `foreground_iou_threshold` is the first threshold.
  cascade_iou_thresholds: Optional[List[float]] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
139
140
141
142
143
144
145
146
147
148


@dataclasses.dataclass
class ROIAligner(hyperparams.Config):
  crop_size: int = 7
  sample_offset: float = 0.5


@dataclasses.dataclass
class DetectionGenerator(hyperparams.Config):
Fan Yang's avatar
Fan Yang committed
149
  apply_nms: bool = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
150
151
152
153
154
155
156
157
158
159
160
161
162
  pre_nms_top_k: int = 5000
  pre_nms_score_threshold: float = 0.05
  nms_iou_threshold: float = 0.5
  max_num_detections: int = 100
  use_batched_nms: bool = False


@dataclasses.dataclass
class MaskHead(hyperparams.Config):
  upsample_factor: int = 2
  num_convs: int = 4
  num_filters: int = 256
  use_separable_conv: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
163
  class_agnostic: bool = False
Abdullah Rashwan's avatar
Abdullah Rashwan committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219


@dataclasses.dataclass
class MaskSampler(hyperparams.Config):
  num_sampled_masks: int = 128


@dataclasses.dataclass
class MaskROIAligner(hyperparams.Config):
  crop_size: int = 14
  sample_offset: float = 0.5


@dataclasses.dataclass
class MaskRCNN(hyperparams.Config):
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  min_level: int = 2
  max_level: int = 6
  anchor: Anchor = Anchor()
  include_mask: bool = True
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  decoder: decoders.Decoder = decoders.Decoder(
      type='fpn', fpn=decoders.FPN())
  rpn_head: RPNHead = RPNHead()
  detection_head: DetectionHead = DetectionHead()
  roi_generator: ROIGenerator = ROIGenerator()
  roi_sampler: ROISampler = ROISampler()
  roi_aligner: ROIAligner = ROIAligner()
  detection_generator: DetectionGenerator = DetectionGenerator()
  mask_head: Optional[MaskHead] = MaskHead()
  mask_sampler: Optional[MaskSampler] = MaskSampler()
  mask_roi_aligner: Optional[MaskROIAligner] = MaskROIAligner()
  norm_activation: common.NormActivation = common.NormActivation(
      norm_momentum=0.997,
      norm_epsilon=0.0001,
      use_sync_bn=True)


@dataclasses.dataclass
class Losses(hyperparams.Config):
  rpn_huber_loss_delta: float = 1. / 9.
  frcnn_huber_loss_delta: float = 1.
  l2_weight_decay: float = 0.0
  rpn_score_weight: float = 1.0
  rpn_box_weight: float = 1.0
  frcnn_class_weight: float = 1.0
  frcnn_box_weight: float = 1.0
  mask_weight: float = 1.0


@dataclasses.dataclass
class MaskRCNNTask(cfg.TaskConfig):
  model: MaskRCNN = MaskRCNN()
  train_data: DataConfig = DataConfig(is_training=True)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
220
221
  validation_data: DataConfig = DataConfig(is_training=False,
                                           drop_remainder=False)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
222
223
224
225
  losses: Losses = Losses()
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: str = 'all'  # all or backbone
  annotation_file: Optional[str] = None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
226
  per_category_metrics: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
227
228
  # If set, we only use masks for the specified class IDs.
  allowed_mask_class_ids: Optional[List[int]] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
229
230
231
232
233
234
235
236
237
238


COCO_INPUT_PATH_BASE = 'coco'


@exp_factory.register_config_factory('fasterrcnn_resnetfpn_coco')
def fasterrcnn_resnetfpn_coco() -> cfg.ExperimentConfig:
  """COCO object detection with Faster R-CNN."""
  steps_per_epoch = 500
  coco_val_samples = 5000
Xianzhi Du's avatar
Xianzhi Du committed
239
240
  train_batch_size = 64
  eval_batch_size = 8
Abdullah Rashwan's avatar
Abdullah Rashwan committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=MaskRCNNTask(
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/resnet50_imagenet/ckpt-28080',
          init_checkpoint_modules='backbone',
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=MaskRCNN(
              num_classes=91,
              input_size=[1024, 1024, 3],
              include_mask=False,
              mask_head=None,
              mask_sampler=None,
              mask_roi_aligner=None),
          losses=Losses(l2_weight_decay=0.00004),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
Xianzhi Du's avatar
Xianzhi Du committed
260
              global_batch_size=train_batch_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
261
262
263
264
265
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.8, aug_scale_max=1.25)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
266
267
              global_batch_size=eval_batch_size,
              drop_remainder=False)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
268
269
      trainer=cfg.TrainerConfig(
          train_steps=22500,
Xianzhi Du's avatar
Xianzhi Du committed
270
          validation_steps=coco_val_samples // eval_batch_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [15000, 20000],
                      'values': [0.12, 0.012, 0.0012],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 500,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])
  return config


@exp_factory.register_config_factory('maskrcnn_resnetfpn_coco')
def maskrcnn_resnetfpn_coco() -> cfg.ExperimentConfig:
  """COCO object detection with Mask R-CNN."""
  steps_per_epoch = 500
  coco_val_samples = 5000
Xianzhi Du's avatar
Xianzhi Du committed
309
310
  train_batch_size = 64
  eval_batch_size = 8
Abdullah Rashwan's avatar
Abdullah Rashwan committed
311

Xianzhi Du's avatar
Xianzhi Du committed
312
313
314
315
316
317
318
319
320
321
322
323
324
  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=MaskRCNNTask(
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/resnet50_imagenet/ckpt-28080',
          init_checkpoint_modules='backbone',
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=MaskRCNN(
              num_classes=91, input_size=[1024, 1024, 3], include_mask=True),
          losses=Losses(l2_weight_decay=0.00004),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
Xianzhi Du's avatar
Xianzhi Du committed
325
              global_batch_size=train_batch_size,
Xianzhi Du's avatar
Xianzhi Du committed
326
327
328
329
330
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.8, aug_scale_max=1.25)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
331
332
              global_batch_size=eval_batch_size,
              drop_remainder=False)),
Xianzhi Du's avatar
Xianzhi Du committed
333
334
      trainer=cfg.TrainerConfig(
          train_steps=22500,
Xianzhi Du's avatar
Xianzhi Du committed
335
          validation_steps=coco_val_samples // eval_batch_size,
Xianzhi Du's avatar
Xianzhi Du committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [15000, 20000],
                      'values': [0.12, 0.012, 0.0012],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 500,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])
  return config


Xianzhi Du's avatar
Xianzhi Du committed
369
370
371
372
@exp_factory.register_config_factory('maskrcnn_spinenet_coco')
def maskrcnn_spinenet_coco() -> cfg.ExperimentConfig:
  """COCO object detection with Mask R-CNN with SpineNet backbone."""
  steps_per_epoch = 463
Xianzhi Du's avatar
Xianzhi Du committed
373
  coco_val_samples = 5000
Xianzhi Du's avatar
Xianzhi Du committed
374
375
  train_batch_size = 256
  eval_batch_size = 8
Xianzhi Du's avatar
Xianzhi Du committed
376

Abdullah Rashwan's avatar
Abdullah Rashwan committed
377
378
379
380
381
382
  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=MaskRCNNTask(
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=MaskRCNN(
Xianzhi Du's avatar
Xianzhi Du committed
383
384
385
386
387
388
389
390
391
392
393
              backbone=backbones.Backbone(
                  type='spinenet',
                  spinenet=backbones.SpineNet(
                      model_id='49',
                      min_level=3,
                      max_level=7,
                  )),
              decoder=decoders.Decoder(
                  type='identity', identity=decoders.Identity()),
              anchor=Anchor(anchor_size=3),
              norm_activation=common.NormActivation(use_sync_bn=True),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
394
              num_classes=91,
Xianzhi Du's avatar
Xianzhi Du committed
395
396
397
398
              input_size=[640, 640, 3],
              min_level=3,
              max_level=7,
              include_mask=True),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
399
400
401
402
          losses=Losses(l2_weight_decay=0.00004),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
Xianzhi Du's avatar
Xianzhi Du committed
403
              global_batch_size=train_batch_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
404
              parser=Parser(
Xianzhi Du's avatar
Xianzhi Du committed
405
                  aug_rand_hflip=True, aug_scale_min=0.5, aug_scale_max=2.0)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
406
407
408
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
409
410
              global_batch_size=eval_batch_size,
              drop_remainder=False)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
411
      trainer=cfg.TrainerConfig(
Xianzhi Du's avatar
Xianzhi Du committed
412
413
          train_steps=steps_per_epoch * 350,
          validation_steps=coco_val_samples // eval_batch_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
Xianzhi Du's avatar
Xianzhi Du committed
428
429
430
431
                      'boundaries': [
                          steps_per_epoch * 320, steps_per_epoch * 340
                      ],
                      'values': [0.32, 0.032, 0.0032],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
432
433
434
435
436
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
Xianzhi Du's avatar
Xianzhi Du committed
437
                      'warmup_steps': 2000,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
438
439
440
441
442
443
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
Xianzhi Du's avatar
Xianzhi Du committed
444
445
446
          'task.validation_data.is_training != None',
          'task.model.min_level == task.model.backbone.spinenet.min_level',
          'task.model.max_level == task.model.backbone.spinenet.max_level',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
447
448
449
450
      ])
  return config


Xianzhi Du's avatar
Xianzhi Du committed
451
452
453
@exp_factory.register_config_factory('cascadercnn_spinenet_coco')
def cascadercnn_spinenet_coco() -> cfg.ExperimentConfig:
  """COCO object detection with Cascade R-CNN with SpineNet backbone."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
454
455
  steps_per_epoch = 463
  coco_val_samples = 5000
Xianzhi Du's avatar
Xianzhi Du committed
456
457
  train_batch_size = 256
  eval_batch_size = 8
Abdullah Rashwan's avatar
Abdullah Rashwan committed
458
459
460
461
462
463
464
465

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=MaskRCNNTask(
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=MaskRCNN(
              backbone=backbones.Backbone(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
466
467
468
469
470
471
                  type='spinenet',
                  spinenet=backbones.SpineNet(
                      model_id='49',
                      min_level=3,
                      max_level=7,
                  )),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
472
473
              decoder=decoders.Decoder(
                  type='identity', identity=decoders.Identity()),
Xianzhi Du's avatar
Xianzhi Du committed
474
475
476
              roi_sampler=ROISampler(cascade_iou_thresholds=[0.6, 0.7]),
              detection_head=DetectionHead(
                  class_agnostic_bbox_pred=True, cascade_class_ensemble=True),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
477
              anchor=Anchor(anchor_size=3),
Xianzhi Du's avatar
Xianzhi Du committed
478
479
              norm_activation=common.NormActivation(
                  use_sync_bn=True, activation='swish'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
480
481
482
483
484
485
486
487
488
              num_classes=91,
              input_size=[640, 640, 3],
              min_level=3,
              max_level=7,
              include_mask=True),
          losses=Losses(l2_weight_decay=0.00004),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
Xianzhi Du's avatar
Xianzhi Du committed
489
              global_batch_size=train_batch_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
490
              parser=Parser(
Xianzhi Du's avatar
Xianzhi Du committed
491
                  aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.5)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
492
493
494
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
495
496
              global_batch_size=eval_batch_size,
              drop_remainder=False)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
497
      trainer=cfg.TrainerConfig(
Xianzhi Du's avatar
Xianzhi Du committed
498
499
          train_steps=steps_per_epoch * 500,
          validation_steps=coco_val_samples // eval_batch_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
Xianzhi Du's avatar
Xianzhi Du committed
515
                          steps_per_epoch * 475, steps_per_epoch * 490
Abdullah Rashwan's avatar
Abdullah Rashwan committed
516
                      ],
Xianzhi Du's avatar
Xianzhi Du committed
517
                      'values': [0.32, 0.032, 0.0032],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
518
519
520
521
522
523
524
525
526
527
528
529
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 2000,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
530
          'task.validation_data.is_training != None',
Xianzhi Du's avatar
Xianzhi Du committed
531
532
          'task.model.min_level == task.model.backbone.spinenet.min_level',
          'task.model.max_level == task.model.backbone.spinenet.max_level',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
533
534
      ])
  return config