distribution_utils.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Helper functions for running models in a distributed setting."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
22
import json
import os
23
24
import random
import string
25
26
import tensorflow as tf

27
28
29
30
31
32
_COLLECTIVE_COMMUNICATION_OPTIONS = {
    None: tf.distribute.experimental.CollectiveCommunication.AUTO,
    "ring": tf.distribute.experimental.CollectiveCommunication.RING,
    "nccl": tf.distribute.experimental.CollectiveCommunication.NCCL
}

33
34
35
36
37
38
39
40
41
42
_MIRRORED_ALL_REDUCE_NUM_PACKS = 2

_MIRRORED_ALL_REDUCE_OPTIONS = {
    None: None,
    "nccl": tf.distribute.NcclAllReduce(
        num_packs=_MIRRORED_ALL_REDUCE_NUM_PACKS),
    "hierarchical_copy": tf.distribute.HierarchicalCopyAllReduce(
        num_packs=_MIRRORED_ALL_REDUCE_NUM_PACKS)
}

43

44
45
def get_distribution_strategy(distribution_strategy="default",
                              num_gpus=0,
46
                              num_workers=1,
47
                              all_reduce_alg=None):
48
49
50
  """Return a DistributionStrategy for running the model.

  Args:
51
52
    distribution_strategy: a string specifying which distribution strategy to
      use. Accepted values are 'off', 'default', 'one_device', 'mirrored',
53
54
55
56
      'parameter_server', 'multi_worker_mirrored', case insensitive. 'off' means
      not to use Distribution Strategy; 'default' means to choose from
      `MirroredStrategy`, `MultiWorkerMirroredStrategy`, or `OneDeviceStrategy`
      according to the number of GPUs and number of workers.
57
    num_gpus: Number of GPUs to run this model.
58
    num_workers: Number of workers to run this model.
59
60
61
62
63
    all_reduce_alg: Optional. Specifies which algorithm to use when performing
      all-reduce. For `MirroredStrategy`, valid values are "nccl" and
      "hierarchical_copy". For `MultiWorkerMirroredStrategy`, valid values are
      "ring" and "nccl".  If None, DistributionStrategy will choose based on
      device topology.
64
65

  Returns:
66
    tf.distribute.DistibutionStrategy object.
Shining Sun's avatar
Shining Sun committed
67
  Raises:
68
69
    ValueError: if `distribution_strategy` is 'off' or 'one_device' and
      `num_gpus` is larger than 1; or `num_gpus` is negative.
70
  """
71
72
73
74
75
  if num_gpus < 0:
    raise ValueError("`num_gpus` can not be negative.")

  distribution_strategy = distribution_strategy.lower()
  if distribution_strategy == "off":
76
77
78
79
    if num_gpus > 1 or num_workers > 1:
      raise ValueError(
          "When {} GPUs and  {} workers are specified, distribution_strategy "
          "flag cannot be set to 'off'.".format(num_gpus, num_workers))
80
81
    return None

82
  if distribution_strategy == "multi_worker_mirrored" or num_workers > 1:
83
84
85
    if all_reduce_alg not in _COLLECTIVE_COMMUNICATION_OPTIONS:
      raise ValueError(
          "When used with `multi_worker_mirrored`, valid values for "
86
          "all_reduce_alg are ['ring', 'nccl'].  Supplied value: {}".format(
87
88
89
              all_reduce_alg))
    return tf.distribute.experimental.MultiWorkerMirroredStrategy(
        communication=_COLLECTIVE_COMMUNICATION_OPTIONS[all_reduce_alg])
90

91
92
93
  if (distribution_strategy == "one_device" or
      (distribution_strategy == "default" and num_gpus <= 1)):
    if num_gpus == 0:
Toby Boyd's avatar
Toby Boyd committed
94
      return tf.distribute.OneDeviceStrategy("device:CPU:0")
Toby Boyd's avatar
Toby Boyd committed
95
    else:
96
97
98
      if num_gpus > 1:
        raise ValueError("`OneDeviceStrategy` can not be used for more than "
                         "one device.")
Toby Boyd's avatar
Toby Boyd committed
99
      return tf.distribute.OneDeviceStrategy("device:GPU:0")
100
101
102
103
104

  if distribution_strategy in ("mirrored", "default"):
    if num_gpus == 0:
      assert distribution_strategy == "mirrored"
      devices = ["device:CPU:0"]
Shining Sun's avatar
Shining Sun committed
105
    else:
106
      devices = ["device:GPU:%d" % i for i in range(num_gpus)]
107
108
109
110
111
112
113
114
    if all_reduce_alg not in _MIRRORED_ALL_REDUCE_OPTIONS:
      raise ValueError(
          "When used with `mirrored`, valid values for all_reduce_alg are "
          "['nccl', 'hierarchical_copy'].  Supplied value: {}".format(
              all_reduce_alg))
    return tf.distribute.MirroredStrategy(
        devices=devices,
        cross_device_ops=_MIRRORED_ALL_REDUCE_OPTIONS[all_reduce_alg])
115

116
  if distribution_strategy == "parameter_server":
117
    return tf.distribute.experimental.ParameterServerStrategy()
118
119
120
121

  raise ValueError(
      "Unrecognized Distribution Strategy: %r" % distribution_strategy)

122
123
124
125

def per_device_batch_size(batch_size, num_gpus):
  """For multi-gpu, batch-size must be a multiple of the number of GPUs.

126
127
128

  Note that distribution strategy handles this automatically when used with
  Keras. For using with Estimator, we need to get per GPU batch.
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

  Args:
    batch_size: Global batch size to be divided among devices. This should be
      equal to num_gpus times the single-GPU batch_size for multi-gpu training.
    num_gpus: How many GPUs are used with DistributionStrategies.

  Returns:
    Batch size per device.

  Raises:
    ValueError: if batch_size is not divisible by number of devices
  """
  if num_gpus <= 1:
    return batch_size

  remainder = batch_size % num_gpus
  if remainder:
Toby Boyd's avatar
Toby Boyd committed
146
147
148
    err = ('When running with multiple GPUs, batch size '
           'must be a multiple of the number of available GPUs. Found {} '
           'GPUs with a batch size of {}; try --batch_size={} instead.'
149
150
151
          ).format(num_gpus, batch_size, batch_size - remainder)
    raise ValueError(err)
  return int(batch_size / num_gpus)
152

Toby Boyd's avatar
Toby Boyd committed
153

154
155
156
157
158
159
160
161
162
163
# The `SyntheticDataset` is a temporary solution for generating synthetic data
# directly on devices. It is only useful for Keras with Distribution
# Strategies. We will have better support in `tf.data` or Distribution Strategy
# later.
class SyntheticDataset(object):
  """A dataset that generates synthetic data on each device."""

  def __init__(self, dataset, split_by=1):
    self._input_data = {}
    # dataset.take(1) doesn't have GPU kernel.
Toby Boyd's avatar
Toby Boyd committed
164
    with tf.device('device:CPU:0'):
165
166
167
168
169
170
171
      tensor = tf.data.experimental.get_single_element(dataset.take(1))
    flat_tensor = tf.nest.flatten(tensor)
    variable_data = []
    self._initializers = []
    for t in flat_tensor:
      rebatched_t = tf.split(t, num_or_size_splits=split_by, axis=0)[0]
      assert rebatched_t.shape.is_fully_defined(), rebatched_t.shape
Toby Boyd's avatar
Toby Boyd committed
172
173
      v = tf.compat.v1.get_local_variable(self.random_name(),
                                          initializer=rebatched_t)
174
175
176
177
178
179
180
181
182
183
184
185
186
187
      variable_data.append(v)
      self._initializers.append(v.initializer)
    self._input_data = tf.nest.pack_sequence_as(tensor, variable_data)

  def get_next(self):
    return self._input_data

  def initialize(self):
    if tf.executing_eagerly():
      return tf.no_op()
    else:
      return self._initializers

  def random_name(self, size=10, chars=string.ascii_uppercase + string.digits):
Toby Boyd's avatar
Toby Boyd committed
188
    return ''.join(random.choice(chars) for _ in range(size))
189
190
191
192
193


def _monkey_patch_dataset_method(strategy):
  """Monkey-patch `strategy`'s `make_dataset_iterator` method."""
  def make_dataset_iterator(self, dataset):
Toby Boyd's avatar
Toby Boyd committed
194
    tf.compat.v1.logging.info('Using pure synthetic data.')
195
196
197
198
199
200
201
202
203
204
205
    with self.scope():
      if self.extended._global_batch_size:  # pylint: disable=protected-access
        return SyntheticDataset(dataset, self.num_replicas_in_sync)
      else:
        return SyntheticDataset(dataset)

  strategy.org_make_dataset_iterator = strategy.make_dataset_iterator
  strategy.make_dataset_iterator = make_dataset_iterator


def _undo_monkey_patch_dataset_method(strategy):
Toby Boyd's avatar
Toby Boyd committed
206
  if hasattr(strategy, 'org_make_dataset_iterator'):
207
208
209
210
    strategy.make_dataset_iterator = strategy.org_make_dataset_iterator


def set_up_synthetic_data():
211
  _monkey_patch_dataset_method(tf.distribute.OneDeviceStrategy)
212
  _monkey_patch_dataset_method(tf.distribute.MirroredStrategy)
Toby Boyd's avatar
Toby Boyd committed
213
214
215
216
217
218
  # TODO(tobyboyd): Remove when contrib.distribute is all in core.
  if hasattr(tf, 'contrib'):
    _monkey_patch_dataset_method(tf.contrib.distribute.MirroredStrategy)
    _monkey_patch_dataset_method(tf.contrib.distribute.OneDeviceStrategy)
  else:
    print('Contrib missing: Skip monkey patch tf.contrib.distribute.*')
219
220
221


def undo_set_up_synthetic_data():
222
  _undo_monkey_patch_dataset_method(tf.distribute.OneDeviceStrategy)
223
  _undo_monkey_patch_dataset_method(tf.distribute.MirroredStrategy)
Toby Boyd's avatar
Toby Boyd committed
224
225
226
227
228
229
  # TODO(tobyboyd): Remove when contrib.distribute is all in core.
  if hasattr(tf, 'contrib'):
    _undo_monkey_patch_dataset_method(tf.contrib.distribute.MirroredStrategy)
    _undo_monkey_patch_dataset_method(tf.contrib.distribute.OneDeviceStrategy)
  else:
    print('Contrib missing: Skip remove monkey patch tf.contrib.distribute.*')
230
231
232
233
234
235
236
237
238
239
240
241
242


def configure_cluster(worker_hosts=None, task_index=-1):
  """Set multi-worker cluster spec in TF_CONFIG environment variable.

  Args:
    worker_hosts: comma-separated list of worker ip:port pairs.

  Returns:
    Number of workers in the cluster.
  """
  tf_config = json.loads(os.environ.get('TF_CONFIG', '{}'))
  if tf_config:
243
244
    num_workers = (len(tf_config['cluster'].get('chief', [])) +
                   len(tf_config['cluster'].get('worker', [])))
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
  elif worker_hosts:
    workers = worker_hosts.split(',')
    num_workers = len(workers)
    if num_workers > 1 and task_index < 0:
      raise ValueError('Must specify task_index when number of workers > 1')
    task_index = 0 if num_workers == 1 else task_index
    os.environ['TF_CONFIG'] = json.dumps({
        'cluster': {
            'worker': workers
        },
        'task': {'type': 'worker', 'index': task_index}
    })
  else:
    num_workers = 1
  return num_workers
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277


def get_strategy_scope(strategy):
  if strategy:
    strategy_scope = strategy.scope()
  else:
    strategy_scope = DummyContextManager()

  return strategy_scope


class DummyContextManager(object):

  def __enter__(self):
    pass

  def __exit__(self, *args):
    pass