distribution_utils.py 8.68 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Helper functions for running models in a distributed setting."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
22
import json
import os
23
24
import random
import string
25
26
27
import tensorflow as tf


28
29
def get_distribution_strategy(distribution_strategy="default",
                              num_gpus=0,
30
                              num_workers=1,
31
                              all_reduce_alg=None):
32
33
34
  """Return a DistributionStrategy for running the model.

  Args:
35
36
    distribution_strategy: a string specify which distribution strategy to use.
      Accepted values are 'off', 'default', 'one_device', 'mirrored',
37
38
39
40
      'parameter_server', 'multi_worker_mirrored', case insensitive. 'off' means
      not to use Distribution Strategy; 'default' means to choose from
      `MirroredStrategy`, `MultiWorkerMirroredStrategy`, or `OneDeviceStrategy`
      according to the number of GPUs and number of workers.
41
    num_gpus: Number of GPUs to run this model.
42
    num_workers: Number of workers to run this model.
43
44
45
46
    all_reduce_alg: Optional. Specify which algorithm to use when performing
      all-reduce. See tf.contrib.distribute.AllReduceCrossDeviceOps for
      available algorithms. If None, DistributionStrategy will choose based on
      device topology.
47
48

  Returns:
49
    tf.distribute.DistibutionStrategy object.
Shining Sun's avatar
Shining Sun committed
50
  Raises:
51
52
    ValueError: if `distribution_strategy` is 'off' or 'one_device' and
      `num_gpus` is larger than 1; or `num_gpus` is negative.
53
  """
54
55
56
57
58
  if num_gpus < 0:
    raise ValueError("`num_gpus` can not be negative.")

  distribution_strategy = distribution_strategy.lower()
  if distribution_strategy == "off":
59
60
61
62
    if num_gpus > 1 or num_workers > 1:
      raise ValueError(
          "When {} GPUs and  {} workers are specified, distribution_strategy "
          "flag cannot be set to 'off'.".format(num_gpus, num_workers))
63
64
    return None

65
66
67
68
  if distribution_strategy == "multi_worker_mirrored" or num_workers > 1:
    return tf.contrib.distribute.CollectiveAllReduceStrategy(
        num_gpus_per_worker=num_gpus)

69
70
71
  if (distribution_strategy == "one_device" or
      (distribution_strategy == "default" and num_gpus <= 1)):
    if num_gpus == 0:
Toby Boyd's avatar
Toby Boyd committed
72
      return tf.distribute.OneDeviceStrategy("device:CPU:0")
Toby Boyd's avatar
Toby Boyd committed
73
    else:
74
75
76
      if num_gpus > 1:
        raise ValueError("`OneDeviceStrategy` can not be used for more than "
                         "one device.")
Toby Boyd's avatar
Toby Boyd committed
77
      return tf.distribute.OneDeviceStrategy("device:GPU:0")
78
79
80
81
82

  if distribution_strategy in ("mirrored", "default"):
    if num_gpus == 0:
      assert distribution_strategy == "mirrored"
      devices = ["device:CPU:0"]
Shining Sun's avatar
Shining Sun committed
83
    else:
84
      devices = ["device:GPU:%d" % i for i in range(num_gpus)]
85
    if all_reduce_alg:
86
87
      return tf.distribute.MirroredStrategy(
          devices=devices,
88
          cross_device_ops=tf.contrib.distribute.AllReduceCrossDeviceOps(
89
              all_reduce_alg, num_packs=2))
90
    else:
91
      return tf.distribute.MirroredStrategy(devices=devices)
92

93
94
95
96
97
98
99
  if distribution_strategy == "parameter_server":
    return tf.contrib.distribute.ParameterServerStrategy(
        num_gpus_per_worker=num_gpus)

  raise ValueError(
      "Unrecognized Distribution Strategy: %r" % distribution_strategy)

100
101
102
103

def per_device_batch_size(batch_size, num_gpus):
  """For multi-gpu, batch-size must be a multiple of the number of GPUs.

104
105
106

  Note that distribution strategy handles this automatically when used with
  Keras. For using with Estimator, we need to get per GPU batch.
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

  Args:
    batch_size: Global batch size to be divided among devices. This should be
      equal to num_gpus times the single-GPU batch_size for multi-gpu training.
    num_gpus: How many GPUs are used with DistributionStrategies.

  Returns:
    Batch size per device.

  Raises:
    ValueError: if batch_size is not divisible by number of devices
  """
  if num_gpus <= 1:
    return batch_size

  remainder = batch_size % num_gpus
  if remainder:
Toby Boyd's avatar
Toby Boyd committed
124
125
126
    err = ('When running with multiple GPUs, batch size '
           'must be a multiple of the number of available GPUs. Found {} '
           'GPUs with a batch size of {}; try --batch_size={} instead.'
127
128
129
          ).format(num_gpus, batch_size, batch_size - remainder)
    raise ValueError(err)
  return int(batch_size / num_gpus)
130

Toby Boyd's avatar
Toby Boyd committed
131

132
133
134
135
136
137
138
139
140
141
# The `SyntheticDataset` is a temporary solution for generating synthetic data
# directly on devices. It is only useful for Keras with Distribution
# Strategies. We will have better support in `tf.data` or Distribution Strategy
# later.
class SyntheticDataset(object):
  """A dataset that generates synthetic data on each device."""

  def __init__(self, dataset, split_by=1):
    self._input_data = {}
    # dataset.take(1) doesn't have GPU kernel.
Toby Boyd's avatar
Toby Boyd committed
142
    with tf.device('device:CPU:0'):
143
144
145
146
147
148
149
      tensor = tf.data.experimental.get_single_element(dataset.take(1))
    flat_tensor = tf.nest.flatten(tensor)
    variable_data = []
    self._initializers = []
    for t in flat_tensor:
      rebatched_t = tf.split(t, num_or_size_splits=split_by, axis=0)[0]
      assert rebatched_t.shape.is_fully_defined(), rebatched_t.shape
Toby Boyd's avatar
Toby Boyd committed
150
151
      v = tf.compat.v1.get_local_variable(self.random_name(),
                                          initializer=rebatched_t)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
      variable_data.append(v)
      self._initializers.append(v.initializer)
    self._input_data = tf.nest.pack_sequence_as(tensor, variable_data)

  def get_next(self):
    return self._input_data

  def initialize(self):
    if tf.executing_eagerly():
      return tf.no_op()
    else:
      return self._initializers

  def random_name(self, size=10, chars=string.ascii_uppercase + string.digits):
Toby Boyd's avatar
Toby Boyd committed
166
    return ''.join(random.choice(chars) for _ in range(size))
167
168
169
170
171


def _monkey_patch_dataset_method(strategy):
  """Monkey-patch `strategy`'s `make_dataset_iterator` method."""
  def make_dataset_iterator(self, dataset):
Toby Boyd's avatar
Toby Boyd committed
172
    tf.compat.v1.logging.info('Using pure synthetic data.')
173
174
175
176
177
178
179
180
181
182
183
    with self.scope():
      if self.extended._global_batch_size:  # pylint: disable=protected-access
        return SyntheticDataset(dataset, self.num_replicas_in_sync)
      else:
        return SyntheticDataset(dataset)

  strategy.org_make_dataset_iterator = strategy.make_dataset_iterator
  strategy.make_dataset_iterator = make_dataset_iterator


def _undo_monkey_patch_dataset_method(strategy):
Toby Boyd's avatar
Toby Boyd committed
184
  if hasattr(strategy, 'org_make_dataset_iterator'):
185
186
187
188
189
    strategy.make_dataset_iterator = strategy.org_make_dataset_iterator


def set_up_synthetic_data():
  _monkey_patch_dataset_method(tf.distribute.MirroredStrategy)
Toby Boyd's avatar
Toby Boyd committed
190
191
192
193
194
195
  # TODO(tobyboyd): Remove when contrib.distribute is all in core.
  if hasattr(tf, 'contrib'):
    _monkey_patch_dataset_method(tf.contrib.distribute.MirroredStrategy)
    _monkey_patch_dataset_method(tf.contrib.distribute.OneDeviceStrategy)
  else:
    print('Contrib missing: Skip monkey patch tf.contrib.distribute.*')
196
197
198
199


def undo_set_up_synthetic_data():
  _undo_monkey_patch_dataset_method(tf.distribute.MirroredStrategy)
Toby Boyd's avatar
Toby Boyd committed
200
201
202
203
204
205
  # TODO(tobyboyd): Remove when contrib.distribute is all in core.
  if hasattr(tf, 'contrib'):
    _undo_monkey_patch_dataset_method(tf.contrib.distribute.MirroredStrategy)
    _undo_monkey_patch_dataset_method(tf.contrib.distribute.OneDeviceStrategy)
  else:
    print('Contrib missing: Skip remove monkey patch tf.contrib.distribute.*')
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234


def configure_cluster(worker_hosts=None, task_index=-1):
  """Set multi-worker cluster spec in TF_CONFIG environment variable.

  Args:
    worker_hosts: comma-separated list of worker ip:port pairs.

  Returns:
    Number of workers in the cluster.
  """
  tf_config = json.loads(os.environ.get('TF_CONFIG', '{}'))
  if tf_config:
    num_workers = len(tf_config['cluster']['worker'])
  elif worker_hosts:
    workers = worker_hosts.split(',')
    num_workers = len(workers)
    if num_workers > 1 and task_index < 0:
      raise ValueError('Must specify task_index when number of workers > 1')
    task_index = 0 if num_workers == 1 else task_index
    os.environ['TF_CONFIG'] = json.dumps({
        'cluster': {
            'worker': workers
        },
        'task': {'type': 'worker', 'index': task_index}
    })
  else:
    num_workers = 1
  return num_workers