resnet_main.py 7.46 KB
Newer Older
Xin Pan's avatar
Xin Pan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""ResNet Train/Eval module.
"""
import time
19
import six
20
import sys
Xin Pan's avatar
Xin Pan committed
21
22
23
24
25
26
27
28
29

import cifar_input
import numpy as np
import resnet_model
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('dataset', 'cifar10', 'cifar10 or cifar100.')
tf.app.flags.DEFINE_string('mode', 'train', 'train or eval.')
30
31
32
33
tf.app.flags.DEFINE_string('train_data_path', '',
                           'Filepattern for training data.')
tf.app.flags.DEFINE_string('eval_data_path', '',
                           'Filepattern for eval data')
Xin Pan's avatar
Xin Pan committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
tf.app.flags.DEFINE_integer('image_size', 32, 'Image side length.')
tf.app.flags.DEFINE_string('train_dir', '',
                           'Directory to keep training outputs.')
tf.app.flags.DEFINE_string('eval_dir', '',
                           'Directory to keep eval outputs.')
tf.app.flags.DEFINE_integer('eval_batch_count', 50,
                            'Number of batches to eval.')
tf.app.flags.DEFINE_bool('eval_once', False,
                         'Whether evaluate the model only once.')
tf.app.flags.DEFINE_string('log_root', '',
                           'Directory to keep the checkpoints. Should be a '
                           'parent directory of FLAGS.train_dir/eval_dir.')
tf.app.flags.DEFINE_integer('num_gpus', 0,
                            'Number of gpus used for training. (0 or 1)')


def train(hps):
  """Training loop."""
  images, labels = cifar_input.build_input(
      FLAGS.dataset, FLAGS.train_data_path, hps.batch_size, FLAGS.mode)
  model = resnet_model.ResNet(hps, images, labels, FLAGS.mode)
  model.build_graph()
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

  param_stats = tf.contrib.tfprof.model_analyzer.print_model_analysis(
      tf.get_default_graph(),
      tfprof_options=tf.contrib.tfprof.model_analyzer.
          TRAINABLE_VARS_PARAMS_STAT_OPTIONS)
  sys.stdout.write('total_params: %d\n' % param_stats.total_parameters)

  tf.contrib.tfprof.model_analyzer.print_model_analysis(
      tf.get_default_graph(),
      tfprof_options=tf.contrib.tfprof.model_analyzer.FLOAT_OPS_OPTIONS)

  truth = tf.argmax(model.labels, axis=1)
  predictions = tf.argmax(model.predictions, axis=1)
  precision = tf.reduce_mean(tf.to_float(tf.equal(predictions, truth)))

  summary_hook = tf.train.SummarySaverHook(
      save_steps=100,
      output_dir=FLAGS.train_dir,
74
75
      summary_op=tf.summary.merge([model.summaries,
                                   tf.summary.scalar('Precision', precision)]))
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

  logging_hook = tf.train.LoggingTensorHook(
      tensors={'step': model.global_step,
               'loss': model.cost,
               'precision': precision},
      every_n_iter=100)

  class _LearningRateSetterHook(tf.train.SessionRunHook):
    """Sets learning_rate based on global step."""

    def begin(self):
      self._lrn_rate = 0.1

    def before_run(self, run_context):
      return tf.train.SessionRunArgs(
          model.global_step,  # Asks for global step value.
          feed_dict={model.lrn_rate: self._lrn_rate})  # Sets learning rate

    def after_run(self, run_context, run_values):
      train_step = run_values.results
      if train_step < 40000:
        self._lrn_rate = 0.1
      elif train_step < 60000:
        self._lrn_rate = 0.01
      elif train_step < 80000:
        self._lrn_rate = 0.001
      else:
        self._lrn_rate = 0.0001

  with tf.train.MonitoredTrainingSession(
      checkpoint_dir=FLAGS.log_root,
      hooks=[logging_hook, _LearningRateSetterHook()],
      chief_only_hooks=[summary_hook],
      # Since we provide a SummarySaverHook, we need to disable default
      # SummarySaverHook. To do that we set save_summaries_steps to 0.
      save_summaries_steps=0,
      config=tf.ConfigProto(allow_soft_placement=True)) as mon_sess:
    while not mon_sess.should_stop():
      mon_sess.run(model.train_op)
Xin Pan's avatar
Xin Pan committed
115
116
117
118
119
120
121
122
123


def evaluate(hps):
  """Eval loop."""
  images, labels = cifar_input.build_input(
      FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode)
  model = resnet_model.ResNet(hps, images, labels, FLAGS.mode)
  model.build_graph()
  saver = tf.train.Saver()
124
  summary_writer = tf.summary.FileWriter(FLAGS.eval_dir)
Xin Pan's avatar
Xin Pan committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

  sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
  tf.train.start_queue_runners(sess)

  best_precision = 0.0
  while True:
    time.sleep(60)
    try:
      ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root)
    except tf.errors.OutOfRangeError as e:
      tf.logging.error('Cannot restore checkpoint: %s', e)
      continue
    if not (ckpt_state and ckpt_state.model_checkpoint_path):
      tf.logging.info('No model to eval yet at %s', FLAGS.log_root)
      continue
    tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
    saver.restore(sess, ckpt_state.model_checkpoint_path)

    total_prediction, correct_prediction = 0, 0
144
    for _ in six.moves.range(FLAGS.eval_batch_count):
Xin Pan's avatar
Xin Pan committed
145
146
147
148
149
      (summaries, loss, predictions, truth, train_step) = sess.run(
          [model.summaries, model.cost, model.predictions,
           model.labels, model.global_step])

      truth = np.argmax(truth, axis=1)
150
151
152
      predictions = np.argmax(predictions, axis=1)
      correct_prediction += np.sum(truth == predictions)
      total_prediction += predictions.shape[0]
Xin Pan's avatar
Xin Pan committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

    precision = 1.0 * correct_prediction / total_prediction
    best_precision = max(precision, best_precision)

    precision_summ = tf.Summary()
    precision_summ.value.add(
        tag='Precision', simple_value=precision)
    summary_writer.add_summary(precision_summ, train_step)
    best_precision_summ = tf.Summary()
    best_precision_summ.value.add(
        tag='Best Precision', simple_value=best_precision)
    summary_writer.add_summary(best_precision_summ, train_step)
    summary_writer.add_summary(summaries, train_step)
    tf.logging.info('loss: %.3f, precision: %.3f, best precision: %.3f\n' %
                    (loss, precision, best_precision))
    summary_writer.flush()

    if FLAGS.eval_once:
      break


def main(_):
  if FLAGS.num_gpus == 0:
    dev = '/cpu:0'
  elif FLAGS.num_gpus == 1:
    dev = '/gpu:0'
  else:
    raise ValueError('Only support 0 or 1 gpu.')

  if FLAGS.mode == 'train':
    batch_size = 128
  elif FLAGS.mode == 'eval':
    batch_size = 100

  if FLAGS.dataset == 'cifar10':
    num_classes = 10
  elif FLAGS.dataset == 'cifar100':
    num_classes = 100

  hps = resnet_model.HParams(batch_size=batch_size,
                             num_classes=num_classes,
                             min_lrn_rate=0.0001,
                             lrn_rate=0.1,
                             num_residual_units=5,
                             use_bottleneck=False,
                             weight_decay_rate=0.0002,
                             relu_leakiness=0.1,
                             optimizer='mom')

  with tf.device(dev):
    if FLAGS.mode == 'train':
      train(hps)
    elif FLAGS.mode == 'eval':
      evaluate(hps)


if __name__ == '__main__':
  tf.app.run()