resnet_main.py 6.66 KB
Newer Older
Xin Pan's avatar
Xin Pan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""ResNet Train/Eval module.
"""
import sys
import time

import cifar_input
import numpy as np
import resnet_model
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('dataset', 'cifar10', 'cifar10 or cifar100.')
tf.app.flags.DEFINE_string('mode', 'train', 'train or eval.')
29
30
tf.app.flags.DEFINE_string('train_data_path', '', 'Filepattern for training data.')
tf.app.flags.DEFINE_string('eval_data_path', '', 'Filepattern for eval data')
Xin Pan's avatar
Xin Pan committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
tf.app.flags.DEFINE_integer('image_size', 32, 'Image side length.')
tf.app.flags.DEFINE_string('train_dir', '',
                           'Directory to keep training outputs.')
tf.app.flags.DEFINE_string('eval_dir', '',
                           'Directory to keep eval outputs.')
tf.app.flags.DEFINE_integer('eval_batch_count', 50,
                            'Number of batches to eval.')
tf.app.flags.DEFINE_bool('eval_once', False,
                         'Whether evaluate the model only once.')
tf.app.flags.DEFINE_string('log_root', '',
                           'Directory to keep the checkpoints. Should be a '
                           'parent directory of FLAGS.train_dir/eval_dir.')
tf.app.flags.DEFINE_integer('num_gpus', 0,
                            'Number of gpus used for training. (0 or 1)')


def train(hps):
  """Training loop."""
  images, labels = cifar_input.build_input(
      FLAGS.dataset, FLAGS.train_data_path, hps.batch_size, FLAGS.mode)
  model = resnet_model.ResNet(hps, images, labels, FLAGS.mode)
  model.build_graph()
  summary_writer = tf.train.SummaryWriter(FLAGS.train_dir)

  sv = tf.train.Supervisor(logdir=FLAGS.log_root,
                           is_chief=True,
                           summary_op=None,
                           save_summaries_secs=60,
                           save_model_secs=300,
                           global_step=model.global_step)
Xin Pan's avatar
Xin Pan committed
61
62
  sess = sv.prepare_or_wait_for_session(
      config=tf.ConfigProto(allow_soft_placement=True))
Xin Pan's avatar
Xin Pan committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

  step = 0
  lrn_rate = 0.1

  while not sv.should_stop():
    (_, summaries, loss, predictions, truth, train_step) = sess.run(
        [model.train_op, model.summaries, model.cost, model.predictions,
         model.labels, model.global_step],
        feed_dict={model.lrn_rate: lrn_rate})

    if train_step < 40000:
      lrn_rate = 0.1
    elif train_step < 60000:
      lrn_rate = 0.01
    elif train_step < 80000:
      lrn_rate = 0.001
    else:
      lrn_rate = 0.0001

    truth = np.argmax(truth, axis=1)
83
84
    predictions = np.argmax(predictions, axis=1)
    precision = np.mean(truth == predictions)
Xin Pan's avatar
Xin Pan committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

    step += 1
    if step % 100 == 0:
      precision_summ = tf.Summary()
      precision_summ.value.add(
          tag='Precision', simple_value=precision)
      summary_writer.add_summary(precision_summ, train_step)
      summary_writer.add_summary(summaries, train_step)
      tf.logging.info('loss: %.3f, precision: %.3f\n' % (loss, precision))
      summary_writer.flush()

  sv.Stop()


def evaluate(hps):
  """Eval loop."""
  images, labels = cifar_input.build_input(
      FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode)
  model = resnet_model.ResNet(hps, images, labels, FLAGS.mode)
  model.build_graph()
  saver = tf.train.Saver()
  summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir)

  sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
  tf.train.start_queue_runners(sess)

  best_precision = 0.0
  while True:
    time.sleep(60)
    try:
      ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root)
    except tf.errors.OutOfRangeError as e:
      tf.logging.error('Cannot restore checkpoint: %s', e)
      continue
    if not (ckpt_state and ckpt_state.model_checkpoint_path):
      tf.logging.info('No model to eval yet at %s', FLAGS.log_root)
      continue
    tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
    saver.restore(sess, ckpt_state.model_checkpoint_path)

    total_prediction, correct_prediction = 0, 0
    for _ in xrange(FLAGS.eval_batch_count):
      (summaries, loss, predictions, truth, train_step) = sess.run(
          [model.summaries, model.cost, model.predictions,
           model.labels, model.global_step])

      truth = np.argmax(truth, axis=1)
132
133
134
      predictions = np.argmax(predictions, axis=1)
      correct_prediction += np.sum(truth == predictions)
      total_prediction += predictions.shape[0]
Xin Pan's avatar
Xin Pan committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

    precision = 1.0 * correct_prediction / total_prediction
    best_precision = max(precision, best_precision)

    precision_summ = tf.Summary()
    precision_summ.value.add(
        tag='Precision', simple_value=precision)
    summary_writer.add_summary(precision_summ, train_step)
    best_precision_summ = tf.Summary()
    best_precision_summ.value.add(
        tag='Best Precision', simple_value=best_precision)
    summary_writer.add_summary(best_precision_summ, train_step)
    summary_writer.add_summary(summaries, train_step)
    tf.logging.info('loss: %.3f, precision: %.3f, best precision: %.3f\n' %
                    (loss, precision, best_precision))
    summary_writer.flush()

    if FLAGS.eval_once:
      break


def main(_):
  if FLAGS.num_gpus == 0:
    dev = '/cpu:0'
  elif FLAGS.num_gpus == 1:
    dev = '/gpu:0'
  else:
    raise ValueError('Only support 0 or 1 gpu.')

  if FLAGS.mode == 'train':
    batch_size = 128
  elif FLAGS.mode == 'eval':
    batch_size = 100

  if FLAGS.dataset == 'cifar10':
    num_classes = 10
  elif FLAGS.dataset == 'cifar100':
    num_classes = 100

  hps = resnet_model.HParams(batch_size=batch_size,
                             num_classes=num_classes,
                             min_lrn_rate=0.0001,
                             lrn_rate=0.1,
                             num_residual_units=5,
                             use_bottleneck=False,
                             weight_decay_rate=0.0002,
                             relu_leakiness=0.1,
                             optimizer='mom')

  with tf.device(dev):
    if FLAGS.mode == 'train':
      train(hps)
    elif FLAGS.mode == 'eval':
      evaluate(hps)


if __name__ == '__main__':
  tf.app.run()