resnet_cifar_model.py 11.9 KB
Newer Older
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""ResNet56 model for Keras adapted from tf.keras.applications.ResNet50.
16
17
18
19
20
21
22
23
24
25

# Reference:
- [Deep Residual Learning for Image Recognition](
    https://arxiv.org/abs/1512.03385)
Adapted from code contributed by BigMoyan.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

26
import functools
27
import tensorflow as tf
Toby Boyd's avatar
Toby Boyd committed
28
29
from tensorflow.python.keras import backend
from tensorflow.python.keras import layers
30
31


32
BATCH_NORM_DECAY = 0.997
33
BATCH_NORM_EPSILON = 1e-5
34
L2_WEIGHT_DECAY = 2e-4
35
36


Shining Sun's avatar
Shining Sun committed
37
38
39
40
41
42
def identity_building_block(input_tensor,
                            kernel_size,
                            filters,
                            stage,
                            block,
                            training=None):
43
44
45
46
47
48
49
50
  """The identity block is the block that has no conv layer at shortcut.

  Arguments:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of
        middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
51
    block: current block label, used for generating layer names
Shining Sun's avatar
Shining Sun committed
52
53
    training: Only used if training keras model with Estimator.  In other
      scenarios it is handled automatically.
54
55
56
57
58
59
60
61
62
63
64
65
66
67

  Returns:
    Output tensor for the block.
  """
  filters1, filters2 = filters
  if tf.keras.backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = tf.keras.layers.Conv2D(filters1, kernel_size,
                             padding='same',
Shining Sun's avatar
Shining Sun committed
68
                             kernel_initializer='he_normal',
69
70
71
72
73
74
75
76
77
                             kernel_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             bias_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             name=conv_name_base + '2a')(input_tensor)
  x = tf.keras.layers.BatchNormalization(axis=bn_axis,
                                         name=bn_name_base + '2a',
                                         momentum=BATCH_NORM_DECAY,
                                         epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
78
                                             x, training=training)
79
80
81
82
  x = tf.keras.layers.Activation('relu')(x)

  x = tf.keras.layers.Conv2D(filters2, kernel_size,
                             padding='same',
Shining Sun's avatar
Shining Sun committed
83
                             kernel_initializer='he_normal',
84
85
86
87
88
89
90
91
92
                             kernel_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             bias_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             name=conv_name_base + '2b')(x)
  x = tf.keras.layers.BatchNormalization(axis=bn_axis,
                                         name=bn_name_base + '2b',
                                         momentum=BATCH_NORM_DECAY,
                                         epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
93
                                             x, training=training)
94
95
96
97
98
99
100

  x = tf.keras.layers.add([x, input_tensor])
  x = tf.keras.layers.Activation('relu')(x)
  return x


def conv_building_block(input_tensor,
Shining Sun's avatar
Shining Sun committed
101
102
103
104
105
106
                        kernel_size,
                        filters,
                        stage,
                        block,
                        strides=(2, 2),
                        training=None):
107
108
109
110
111
112
113
114
  """A block that has a conv layer at shortcut.

  Arguments:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of
        middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
115
    block: current block label, used for generating layer names
116
    strides: Strides for the first conv layer in the block.
Shining Sun's avatar
Shining Sun committed
117
118
    training: Only used if training keras model with Estimator.  In other
      scenarios it is handled automatically.
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

  Returns:
    Output tensor for the block.

  Note that from stage 3,
  the first conv layer at main path is with strides=(2, 2)
  And the shortcut should have strides=(2, 2) as well
  """
  filters1, filters2 = filters
  if tf.keras.backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

Shining Sun's avatar
Shining Sun committed
135
  x = tf.keras.layers.Conv2D(filters1, kernel_size, strides=strides,
136
                             padding='same',
Shining Sun's avatar
Shining Sun committed
137
                             kernel_initializer='he_normal',
138
139
140
141
                             kernel_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             bias_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
Shining Sun's avatar
Shining Sun committed
142
                             name=conv_name_base + '2a')(input_tensor)
143
144
145
146
  x = tf.keras.layers.BatchNormalization(axis=bn_axis,
                                         name=bn_name_base + '2a',
                                         momentum=BATCH_NORM_DECAY,
                                         epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
147
                                             x, training=training)
148
149
150
  x = tf.keras.layers.Activation('relu')(x)

  x = tf.keras.layers.Conv2D(filters2, kernel_size, padding='same',
Shining Sun's avatar
Shining Sun committed
151
                             kernel_initializer='he_normal',
152
153
154
155
156
157
158
159
160
                             kernel_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             bias_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             name=conv_name_base + '2b')(x)
  x = tf.keras.layers.BatchNormalization(axis=bn_axis,
                                         name=bn_name_base + '2b',
                                         momentum=BATCH_NORM_DECAY,
                                         epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
161
                                             x, training=training)
162
163

  shortcut = tf.keras.layers.Conv2D(filters2, (1, 1), strides=strides,
Shining Sun's avatar
Shining Sun committed
164
                                    kernel_initializer='he_normal',
165
166
167
168
169
170
171
172
                                    kernel_regularizer=
                                    tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                                    bias_regularizer=
                                    tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                                    name=conv_name_base + '1')(input_tensor)
  shortcut = tf.keras.layers.BatchNormalization(
      axis=bn_axis, name=bn_name_base + '1',
      momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
173
          shortcut, training=training)
174
175
176
177
178
179

  x = tf.keras.layers.add([x, shortcut])
  x = tf.keras.layers.Activation('relu')(x)
  return x


180
181
182
183
184
185
186
187
def resnet_block(input_tensor,
                 size,
                 kernel_size,
                 filters,
                 stage,
                 conv_strides=(2, 2),
                 training=None):
  """A block which applies conv followed by multiple identity blocks.
188
189

  Arguments:
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    input_tensor: input tensor
    size: integer, number of constituent conv/identity building blocks.
    A conv block is applied once, followed by (size - 1) identity blocks.
    kernel_size: default 3, the kernel size of
        middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
    conv_strides: Strides for the first conv layer in the block.
    training: Only used if training keras model with Estimator.  In other
      scenarios it is handled automatically.

  Returns:
    Output tensor after applying conv and identity blocks.
  """

  x = conv_building_block(input_tensor, kernel_size, filters, stage=stage,
                          strides=conv_strides, block='block_0',
                          training=training)
  for i in range(size - 1):
    x = identity_building_block(x, kernel_size, filters, stage=stage,
                                block='block_%d' % (i + 1), training=training)
  return x

def resnet(num_blocks, classes=10, training=None):
  """Instantiates the ResNet architecture.

  Arguments:
    num_blocks: integer, the number of conv/identity blocks in each block.
      The ResNet contains 3 blocks with each block containing one conv block
      followed by (layers_per_block - 1) number of idenity blocks. Each
      conv/idenity block has 2 convolutional layers. With the input
      convolutional layer and the pooling layer towards the end, this brings
      the total size of the network to (6*num_blocks + 2)
Shining Sun's avatar
Shining Sun committed
223
224
225
    classes: optional number of classes to classify images into
    training: Only used if training keras model with Estimator.  In other
    scenarios it is handled automatically.
226
227

  Returns:
Shining Sun's avatar
Shining Sun committed
228
    A Keras model instance.
229
  """
230

231
232
233
  input_shape = (32, 32, 3)
  img_input = layers.Input(shape=input_shape)

Shining Sun's avatar
Shining Sun committed
234
  if backend.image_data_format() == 'channels_first':
235
236
    x = layers.Lambda(lambda x: backend.permute_dimensions(x, (0, 3, 1, 2)),
                      name='transpose')(img_input)
237
    bn_axis = 1
Toby Boyd's avatar
Toby Boyd committed
238
  else:  # channel_last
239
    x = img_input
Shining Sun's avatar
Shining Sun committed
240
    bn_axis = 3
241

242
  x = tf.keras.layers.ZeroPadding2D(padding=(1, 1), name='conv1_pad')(x)
243
244
245
  x = tf.keras.layers.Conv2D(16, (3, 3),
                             strides=(1, 1),
                             padding='valid',
Shining Sun's avatar
Shining Sun committed
246
247
248
249
250
                             kernel_initializer='he_normal',
                             kernel_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             bias_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
251
252
253
254
                             name='conv1')(x)
  x = tf.keras.layers.BatchNormalization(axis=bn_axis, name='bn_conv1',
                                         momentum=BATCH_NORM_DECAY,
                                         epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
255
                                             x, training=training)
256
257
  x = tf.keras.layers.Activation('relu')(x)

258
259
260
261
262
263
264
265
  x = resnet_block(x, size=num_blocks, kernel_size=3, filters=[16, 16],
                   stage=2, conv_strides=(1, 1), training=training)

  x = resnet_block(x, size=num_blocks, kernel_size=3, filters=[32, 32],
                   stage=3, conv_strides=(2, 2), training=training)

  x = resnet_block(x, size=num_blocks, kernel_size=3, filters=[64, 64],
                   stage=4, conv_strides=(2, 2), training=training)
Shining Sun's avatar
Shining Sun committed
266
267
268
269
270
271
272
273
274

  x = tf.keras.layers.GlobalAveragePooling2D(name='avg_pool')(x)
  x = tf.keras.layers.Dense(classes, activation='softmax',
                            kernel_initializer='he_normal',
                            kernel_regularizer=
                            tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                            bias_regularizer=
                            tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                            name='fc10')(x)
275
276
277
278
279
280

  inputs = img_input
  # Create model.
  model = tf.keras.models.Model(inputs, x, name='resnet56')

  return model
281
282
283
284
285
286


resnet20 = functools.partial(resnet, num_blocks=3)
resnet32 = functools.partial(resnet, num_blocks=5)
resnet56 = functools.partial(resnet, num_blocks=9)
resnet10 = functools.partial(resnet, num_blocks=110)