resnet_cifar_model.py 13.8 KB
Newer Older
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""ResNet56 model for Keras adapted from tf.keras.applications.ResNet50.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

# Reference:
- [Deep Residual Learning for Image Recognition](
    https://arxiv.org/abs/1512.03385)
Adapted from code contributed by BigMoyan.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import warnings

import tensorflow as tf


31
BATCH_NORM_DECAY = 0.997
32
BATCH_NORM_EPSILON = 1e-5
33
L2_WEIGHT_DECAY = 2e-4
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71


def _obtain_input_shape(input_shape,
                        default_size,
                        data_format):
  """Internal utility to compute/validate a model's input shape.

  Arguments:
    input_shape: Either None (will return the default network input shape),
        or a user-provided shape to be validated.
    default_size: Default input width/height for the model.
    data_format: Image data format to use.

  Returns:
    An integer shape tuple (may include None entries).

  Raises:
    ValueError: In case of invalid argument values.
  """
  if input_shape and len(input_shape) == 3:
    if data_format == 'channels_first':
      if input_shape[0] not in {1, 3}:
        warnings.warn(
            'This model usually expects 1 or 3 input channels. '
            'However, it was passed an input_shape with ' +
            str(input_shape[0]) + ' input channels.')
      default_shape = (input_shape[0], default_size, default_size)
    else:
      if input_shape[-1] not in {1, 3}:
        warnings.warn(
            'This model usually expects 1 or 3 input channels. '
            'However, it was passed an input_shape with ' +
            str(input_shape[-1]) + ' input channels.')
      default_shape = (default_size, default_size, input_shape[-1])

  return input_shape


Shining Sun's avatar
Shining Sun committed
72
73
74
75
76
77
def identity_building_block(input_tensor,
                            kernel_size,
                            filters,
                            stage,
                            block,
                            training=None):
78
79
80
81
82
83
84
85
86
  """The identity block is the block that has no conv layer at shortcut.

  Arguments:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of
        middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
    block: 'a','b'..., current block label, used for generating layer names
Shining Sun's avatar
Shining Sun committed
87
88
    training: Only used if training keras model with Estimator.  In other
      scenarios it is handled automatically.
89
90
91
92
93
94
95
96
97
98
99
100
101
102

  Returns:
    Output tensor for the block.
  """
  filters1, filters2 = filters
  if tf.keras.backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = tf.keras.layers.Conv2D(filters1, kernel_size,
                             padding='same',
Shining Sun's avatar
Shining Sun committed
103
                             kernel_initializer='he_normal',
104
105
106
107
108
109
110
111
112
                             kernel_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             bias_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             name=conv_name_base + '2a')(input_tensor)
  x = tf.keras.layers.BatchNormalization(axis=bn_axis,
                                         name=bn_name_base + '2a',
                                         momentum=BATCH_NORM_DECAY,
                                         epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
113
                                             x, training=training)
114
115
116
117
  x = tf.keras.layers.Activation('relu')(x)

  x = tf.keras.layers.Conv2D(filters2, kernel_size,
                             padding='same',
Shining Sun's avatar
Shining Sun committed
118
                             kernel_initializer='he_normal',
119
120
121
122
123
124
125
126
127
                             kernel_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             bias_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             name=conv_name_base + '2b')(x)
  x = tf.keras.layers.BatchNormalization(axis=bn_axis,
                                         name=bn_name_base + '2b',
                                         momentum=BATCH_NORM_DECAY,
                                         epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
128
                                             x, training=training)
129
130
131
132
133
134
135

  x = tf.keras.layers.add([x, input_tensor])
  x = tf.keras.layers.Activation('relu')(x)
  return x


def conv_building_block(input_tensor,
Shining Sun's avatar
Shining Sun committed
136
137
138
139
140
141
                        kernel_size,
                        filters,
                        stage,
                        block,
                        strides=(2, 2),
                        training=None):
142
143
144
145
146
147
148
149
150
151
  """A block that has a conv layer at shortcut.

  Arguments:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of
        middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
    block: 'a','b'..., current block label, used for generating layer names
    strides: Strides for the first conv layer in the block.
Shining Sun's avatar
Shining Sun committed
152
153
    training: Only used if training keras model with Estimator.  In other
      scenarios it is handled automatically.
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

  Returns:
    Output tensor for the block.

  Note that from stage 3,
  the first conv layer at main path is with strides=(2, 2)
  And the shortcut should have strides=(2, 2) as well
  """
  filters1, filters2 = filters
  if tf.keras.backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

Shining Sun's avatar
Shining Sun committed
170
  x = tf.keras.layers.Conv2D(filters1, kernel_size, strides=strides,
171
                             padding='same',
Shining Sun's avatar
Shining Sun committed
172
                             kernel_initializer='he_normal',
173
174
175
176
                             kernel_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             bias_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
Shining Sun's avatar
Shining Sun committed
177
                             name=conv_name_base + '2a')(input_tensor)
178
179
180
181
  x = tf.keras.layers.BatchNormalization(axis=bn_axis,
                                         name=bn_name_base + '2a',
                                         momentum=BATCH_NORM_DECAY,
                                         epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
182
                                             x, training=training)
183
184
185
  x = tf.keras.layers.Activation('relu')(x)

  x = tf.keras.layers.Conv2D(filters2, kernel_size, padding='same',
Shining Sun's avatar
Shining Sun committed
186
                             kernel_initializer='he_normal',
187
188
189
190
191
192
193
194
195
                             kernel_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             bias_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             name=conv_name_base + '2b')(x)
  x = tf.keras.layers.BatchNormalization(axis=bn_axis,
                                         name=bn_name_base + '2b',
                                         momentum=BATCH_NORM_DECAY,
                                         epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
196
                                             x, training=training)
197
198

  shortcut = tf.keras.layers.Conv2D(filters2, (1, 1), strides=strides,
Shining Sun's avatar
Shining Sun committed
199
                                    kernel_initializer='he_normal',
200
201
202
203
204
205
206
207
                                    kernel_regularizer=
                                    tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                                    bias_regularizer=
                                    tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                                    name=conv_name_base + '1')(input_tensor)
  shortcut = tf.keras.layers.BatchNormalization(
      axis=bn_axis, name=bn_name_base + '1',
      momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
208
          shortcut, training=training)
209
210
211
212
213
214

  x = tf.keras.layers.add([x, shortcut])
  x = tf.keras.layers.Activation('relu')(x)
  return x


Shining Sun's avatar
Shining Sun committed
215
def resnet56(input_shape=None, classes=100, training=None):
216
217
218
219
220
  """Instantiates the ResNet56 architecture.

  Arguments:
      input_shape: optional shape tuple
      classes: optional number of classes to classify images into
Shining Sun's avatar
Shining Sun committed
221
222
      training: Only used if training keras model with Estimator.  In other
      scenarios it is handled automatically.
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

  Returns:
      A Keras model instance.
  """
  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=32,
      data_format=tf.keras.backend.image_data_format())

  img_input = tf.keras.layers.Input(shape=input_shape)
  if tf.keras.backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1

  x = tf.keras.layers.ZeroPadding2D(padding=(1, 1), name='conv1_pad')(img_input)
  x = tf.keras.layers.Conv2D(16, (3, 3),
                             strides=(1, 1),
                             padding='valid',
Shining Sun's avatar
Shining Sun committed
243
244
245
246
247
                             kernel_initializer='he_normal',
                             kernel_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             bias_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
248
249
250
251
                             name='conv1')(x)
  x = tf.keras.layers.BatchNormalization(axis=bn_axis, name='bn_conv1',
                                         momentum=BATCH_NORM_DECAY,
                                         epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
252
                                             x, training=training)
253
254
255
  x = tf.keras.layers.Activation('relu')(x)

  x = conv_building_block(x, 3, [16, 16], stage=2, block='a', strides=(1, 1),
Shining Sun's avatar
Shining Sun committed
256
                          training=training)
257
  x = identity_building_block(x, 3, [16, 16], stage=2, block='b',
Shining Sun's avatar
Shining Sun committed
258
                              training=training)
259
  x = identity_building_block(x, 3, [16, 16], stage=2, block='c',
Shining Sun's avatar
Shining Sun committed
260
                              training=training)
261
  x = identity_building_block(x, 3, [16, 16], stage=2, block='d',
Shining Sun's avatar
Shining Sun committed
262
                              training=training)
263
  x = identity_building_block(x, 3, [16, 16], stage=2, block='e',
Shining Sun's avatar
Shining Sun committed
264
                              training=training)
265
  x = identity_building_block(x, 3, [16, 16], stage=2, block='f',
Shining Sun's avatar
Shining Sun committed
266
                              training=training)
267
  x = identity_building_block(x, 3, [16, 16], stage=2, block='g',
Shining Sun's avatar
Shining Sun committed
268
                              training=training)
269
  x = identity_building_block(x, 3, [16, 16], stage=2, block='h',
Shining Sun's avatar
Shining Sun committed
270
                              training=training)
271
  x = identity_building_block(x, 3, [16, 16], stage=2, block='i',
Shining Sun's avatar
Shining Sun committed
272
                              training=training)
273
274

  x = conv_building_block(x, 3, [32, 32], stage=3, block='a',
Shining Sun's avatar
Shining Sun committed
275
                          training=training)
276
  x = identity_building_block(x, 3, [32, 32], stage=3, block='b',
Shining Sun's avatar
Shining Sun committed
277
                              training=training)
278
  x = identity_building_block(x, 3, [32, 32], stage=3, block='c',
Shining Sun's avatar
Shining Sun committed
279
                              training=training)
280
  x = identity_building_block(x, 3, [32, 32], stage=3, block='d',
Shining Sun's avatar
Shining Sun committed
281
                              training=training)
282
  x = identity_building_block(x, 3, [32, 32], stage=3, block='e',
Shining Sun's avatar
Shining Sun committed
283
                              training=training)
284
  x = identity_building_block(x, 3, [32, 32], stage=3, block='f',
Shining Sun's avatar
Shining Sun committed
285
                              training=training)
286
  x = identity_building_block(x, 3, [32, 32], stage=3, block='g',
Shining Sun's avatar
Shining Sun committed
287
                              training=training)
288
  x = identity_building_block(x, 3, [32, 32], stage=3, block='h',
Shining Sun's avatar
Shining Sun committed
289
                              training=training)
290
  x = identity_building_block(x, 3, [32, 32], stage=3, block='i',
Shining Sun's avatar
Shining Sun committed
291
                              training=training)
292
293

  x = conv_building_block(x, 3, [64, 64], stage=4, block='a',
Shining Sun's avatar
Shining Sun committed
294
                          training=training)
295
  x = identity_building_block(x, 3, [64, 64], stage=4, block='b',
Shining Sun's avatar
Shining Sun committed
296
                              training=training)
297
  x = identity_building_block(x, 3, [64, 64], stage=4, block='c',
Shining Sun's avatar
Shining Sun committed
298
                              training=training)
299
  x = identity_building_block(x, 3, [64, 64], stage=4, block='d',
Shining Sun's avatar
Shining Sun committed
300
                              training=training)
301
  x = identity_building_block(x, 3, [64, 64], stage=4, block='e',
Shining Sun's avatar
Shining Sun committed
302
                              training=training)
303
  x = identity_building_block(x, 3, [64, 64], stage=4, block='f',
Shining Sun's avatar
Shining Sun committed
304
                              training=training)
305
  x = identity_building_block(x, 3, [64, 64], stage=4, block='g',
Shining Sun's avatar
Shining Sun committed
306
                              training=training)
307
  x = identity_building_block(x, 3, [64, 64], stage=4, block='h',
Shining Sun's avatar
Shining Sun committed
308
                              training=training)
309
  x = identity_building_block(x, 3, [64, 64], stage=4, block='i',
Shining Sun's avatar
Shining Sun committed
310
311
312
313
314
315
316
317
318
319
                              training=training)

  x = tf.keras.layers.GlobalAveragePooling2D(name='avg_pool')(x)
  x = tf.keras.layers.Dense(classes, activation='softmax',
                            kernel_initializer='he_normal',
                            kernel_regularizer=
                            tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                            bias_regularizer=
                            tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                            name='fc10')(x)
320
321
322
323
324
325

  inputs = img_input
  # Create model.
  model = tf.keras.models.Model(inputs, x, name='resnet56')

  return model