_performance.py 11.9 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
18
"""Register flags for optimizing performance."""

import multiprocessing

Hongkun Yu's avatar
Hongkun Yu committed
19
20
from absl import flags  # pylint: disable=g-bad-import-order
import tensorflow as tf  # pylint: disable=g-bad-import-order
21
22
23

from official.utils.flags._conventions import help_wrap

24
# Map string to TensorFlow dtype
25
DTYPE_MAP = {
26
    "fp16": tf.float16,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
    "bf16": tf.bfloat16,
28
    "fp32": tf.float32,
29
30
31
32
}


def get_tf_dtype(flags_obj):
33
  if getattr(flags_obj, "fp16_implementation", None) == "graph_rewrite":
34
35
36
    # If the graph_rewrite is used, we build the graph with fp32, and let the
    # graph rewrite change ops to fp16.
    return tf.float32
37
  return DTYPE_MAP[flags_obj.dtype]
38
39


40
def get_loss_scale(flags_obj, default_for_fp16):
41
  dtype = get_tf_dtype(flags_obj)
42
  if flags_obj.loss_scale == "dynamic":
43
    return flags_obj.loss_scale
44
45
  elif flags_obj.loss_scale is not None:
    return float(flags_obj.loss_scale)
46
  elif dtype == tf.float32 or dtype == tf.bfloat16:
47
48
    return 1  # No loss scaling is needed for fp32
  else:
49
    assert dtype == tf.float16
50
    return default_for_fp16
51
52


Hongkun Yu's avatar
Hongkun Yu committed
53
54
55
56
57
58
59
60
def define_performance(num_parallel_calls=False,
                       inter_op=False,
                       intra_op=False,
                       synthetic_data=False,
                       max_train_steps=False,
                       dtype=False,
                       all_reduce_alg=False,
                       num_packs=False,
61
                       tf_gpu_thread_mode=False,
Toby Boyd's avatar
Toby Boyd committed
62
                       datasets_num_private_threads=False,
63
                       datasets_num_parallel_batches=False,
Hongkun Yu's avatar
Hongkun Yu committed
64
65
                       dynamic_loss_scale=False,
                       fp16_implementation=False,
66
                       loss_scale=False,
Hongkun Yu's avatar
Hongkun Yu committed
67
68
                       tf_data_experimental_slack=False,
                       enable_xla=False,
69
                       training_dataset_cache=False):
70
71
72
73
74
75
76
  """Register flags for specifying performance tuning arguments.

  Args:
    num_parallel_calls: Create a flag to specify parallelism of data loading.
    inter_op: Create a flag to allow specification of inter op threads.
    intra_op: Create a flag to allow specification of intra op threads.
    synthetic_data: Create a flag to allow the use of synthetic data.
Hongkun Yu's avatar
Hongkun Yu committed
77
78
    max_train_steps: Create a flags to allow specification of maximum number of
      training steps
79
    dtype: Create flags for specifying dtype.
Toby Boyd's avatar
Toby Boyd committed
80
    all_reduce_alg: If set forces a specific algorithm for multi-gpu.
81
82
    num_packs: If set provides number of packs for MirroredStrategy's cross
      device ops.
Toby Boyd's avatar
Toby Boyd committed
83
84
    tf_gpu_thread_mode: gpu_private triggers us of private thread pool.
    datasets_num_private_threads: Number of private threads for datasets.
Toby Boyd's avatar
Toby Boyd committed
85
    datasets_num_parallel_batches: Determines how many batches to process in
Hongkun Yu's avatar
Hongkun Yu committed
86
      parallel when using map and batch from tf.data.
87
88
    dynamic_loss_scale: Allow the "loss_scale" flag to take on the value
      "dynamic". Only valid if `dtype` is True.
89
    fp16_implementation: Create fp16_implementation flag.
90
91
    loss_scale: Controls the loss scaling, normally for mixed-precision
      training. Can only be turned on if dtype is also True.
92
93
    tf_data_experimental_slack: Determines whether to enable tf.data's
      `experimental_slack` option.
Toby Boyd's avatar
Toby Boyd committed
94
    enable_xla: Determines if XLA (auto clustering) is turned on.
95
    training_dataset_cache: Whether to cache the training dataset on workers.
Hongkun Yu's avatar
Hongkun Yu committed
96
97
      Typically used to improve training performance when training data is in
      remote storage and can fit into worker memory.
Toby Boyd's avatar
Toby Boyd committed
98

99
100
101
102
103
104
105
  Returns:
    A list of flags for core.py to marks as key flags.
  """

  key_flags = []
  if num_parallel_calls:
    flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
106
107
        name="num_parallel_calls",
        short_name="npc",
Toby Boyd's avatar
Toby Boyd committed
108
        default=multiprocessing.cpu_count(),
109
110
111
112
113
114
115
116
        help=help_wrap("The number of records that are  processed in parallel "
                       "during input processing. This can be optimized per "
                       "data set but for generally homogeneous data sets, "
                       "should be approximately the number of available CPU "
                       "cores. (default behavior)"))

  if inter_op:
    flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
117
118
119
        name="inter_op_parallelism_threads",
        short_name="inter",
        default=0,
120
        help=help_wrap("Number of inter_op_parallelism_threads to use for CPU. "
Hongkun Yu's avatar
Hongkun Yu committed
121
                       "See TensorFlow config.proto for details."))
122
123
124

  if intra_op:
    flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
125
126
127
        name="intra_op_parallelism_threads",
        short_name="intra",
        default=0,
128
129
130
131
132
        help=help_wrap("Number of intra_op_parallelism_threads to use for CPU. "
                       "See TensorFlow config.proto for details."))

  if synthetic_data:
    flags.DEFINE_bool(
Hongkun Yu's avatar
Hongkun Yu committed
133
134
135
        name="use_synthetic_data",
        short_name="synth",
        default=False,
136
137
138
139
140
141
142
        help=help_wrap(
            "If set, use fake data (zeroes) instead of a real dataset. "
            "This mode is useful for performance debugging, as it removes "
            "input processing steps, but will not learn anything."))

  if max_train_steps:
    flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
143
144
145
146
        name="max_train_steps",
        short_name="mts",
        default=None,
        help=help_wrap(
147
148
149
            "The model will stop training if the global_step reaches this "
            "value. If not set, training will run until the specified number "
            "of epochs have run as usual. It is generally recommended to set "
Hongkun Yu's avatar
Hongkun Yu committed
150
            "--train_epochs=1 when using this flag."))
151
152
153

  if dtype:
    flags.DEFINE_enum(
Hongkun Yu's avatar
Hongkun Yu committed
154
155
156
        name="dtype",
        short_name="dt",
        default="fp32",
157
158
159
160
161
        enum_values=DTYPE_MAP.keys(),
        help=help_wrap("The TensorFlow datatype used for calculations. "
                       "Variables may be cast to a higher precision on a "
                       "case-by-case basis for numerical stability."))

162
163
164
165
166
167
168
169
    loss_scale_help_text = (
        "The amount to scale the loss by when the model is run. {}. Before "
        "gradients are computed, the loss is multiplied by the loss scale, "
        "making all gradients loss_scale times larger. To adjust for this, "
        "gradients are divided by the loss scale before being applied to "
        "variables. This is mathematically equivalent to training without "
        "a loss scale, but the loss scale helps avoid some intermediate "
        "gradients from underflowing to zero. If not provided the default "
Hongkun Yu's avatar
Hongkun Yu committed
170
        "for fp16 is 128 and 1 for all other dtypes.{}")
171
172
173
174
175
176
177
178
179
180
181
182
    if dynamic_loss_scale:
      loss_scale_help_text = loss_scale_help_text.format(
          "This can be an int/float or the string 'dynamic'",
          " The string 'dynamic' can be used to dynamically determine the "
          "optimal loss scale during training, but currently this "
          "significantly slows down performance")
      loss_scale_validation_msg = ("loss_scale should be a positive int/float "
                                   "or the string 'dynamic'.")
    else:
      loss_scale_help_text = loss_scale_help_text.format(
          "This must be an int/float", "")
      loss_scale_validation_msg = "loss_scale should be a positive int/float."
183
184
    if loss_scale:
      flags.DEFINE_string(
Hongkun Yu's avatar
Hongkun Yu committed
185
186
187
          name="loss_scale",
          short_name="ls",
          default=None,
188
          help=help_wrap(loss_scale_help_text))
189

Hongkun Yu's avatar
Hongkun Yu committed
190
191
      @flags.validator(
          flag_name="loss_scale", message=loss_scale_validation_msg)
192
193
194
195
      def _check_loss_scale(loss_scale):  # pylint: disable=unused-variable
        """Validator to check the loss scale flag is valid."""
        if loss_scale is None:
          return True  # null case is handled in get_loss_scale()
196

197
198
        if loss_scale == "dynamic" and dynamic_loss_scale:
          return True
199

200
201
202
203
        try:
          loss_scale = float(loss_scale)
        except ValueError:
          return False
204

205
        return loss_scale > 0
206

207
208
    if fp16_implementation:
      flags.DEFINE_enum(
Hongkun Yu's avatar
Hongkun Yu committed
209
210
          name="fp16_implementation",
          default="keras",
211
          enum_values=("keras', 'graph_rewrite"),
212
213
          help=help_wrap(
              "When --dtype=fp16, how fp16 should be implemented. This has no "
214
215
216
217
              "impact on correctness. 'keras' uses the "
              "tf.keras.mixed_precision API. 'graph_rewrite' uses the "
              "tf.train.experimental.enable_mixed_precision_graph_rewrite "
              "API."))
218

Hongkun Yu's avatar
Hongkun Yu committed
219
220
      @flags.multi_flags_validator(
          ["fp16_implementation", "dtype", "loss_scale"])
221
222
      def _check_fp16_implementation(flags_dict):
        """Validator to check fp16_implementation flag is valid."""
223
224
225
226
        if (flags_dict["fp16_implementation"] == "graph_rewrite" and
            flags_dict["dtype"] != "fp16"):
          raise flags.ValidationError("--fp16_implementation should not be "
                                      "specified unless --dtype=fp16")
227
228
        return True

229
230
  if all_reduce_alg:
    flags.DEFINE_string(
Hongkun Yu's avatar
Hongkun Yu committed
231
232
233
        name="all_reduce_alg",
        short_name="ara",
        default=None,
234
        help=help_wrap("Defines the algorithm to use for performing all-reduce."
235
236
237
238
239
240
241
                       "When specified with MirroredStrategy for single "
                       "worker, this controls "
                       "tf.contrib.distribute.AllReduceCrossTowerOps.  When "
                       "specified with MultiWorkerMirroredStrategy, this "
                       "controls "
                       "tf.distribute.experimental.CollectiveCommunication; "
                       "valid options are `ring` and `nccl`."))
242

243
244
  if num_packs:
    flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
245
246
        name="num_packs",
        default=1,
247
248
249
250
        help=help_wrap("Sets `num_packs` in the cross device ops used in "
                       "MirroredStrategy.  For details, see "
                       "tf.distribute.NcclAllReduce."))

Toby Boyd's avatar
Toby Boyd committed
251
252
  if tf_gpu_thread_mode:
    flags.DEFINE_string(
Hongkun Yu's avatar
Hongkun Yu committed
253
254
255
        name="tf_gpu_thread_mode",
        short_name="gt_mode",
        default=None,
Toby Boyd's avatar
Toby Boyd committed
256
        help=help_wrap(
Hongkun Yu's avatar
Hongkun Yu committed
257
            "Whether and how the GPU device uses its own threadpool."))
Toby Boyd's avatar
Toby Boyd committed
258

259
    flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
260
261
262
263
264
        name="per_gpu_thread_count",
        short_name="pgtc",
        default=0,
        help=help_wrap("The number of threads to use for GPU. Only valid when "
                       "tf_gpu_thread_mode is not global."))
265

Toby Boyd's avatar
Toby Boyd committed
266
267
  if datasets_num_private_threads:
    flags.DEFINE_integer(
Toby Boyd's avatar
Toby Boyd committed
268
        name="datasets_num_private_threads",
Toby Boyd's avatar
Toby Boyd committed
269
270
271
        default=None,
        help=help_wrap(
            "Number of threads for a private threadpool created for all"
Hongkun Yu's avatar
Hongkun Yu committed
272
            "datasets computation.."))
273

Toby Boyd's avatar
Toby Boyd committed
274
275
276
277
278
279
  if datasets_num_parallel_batches:
    flags.DEFINE_integer(
        name="datasets_num_parallel_batches",
        default=None,
        help=help_wrap(
            "Determines how many batches to process in parallel when using "
Hongkun Yu's avatar
Hongkun Yu committed
280
            "map and batch from tf.data."))
Toby Boyd's avatar
Toby Boyd committed
281

282
283
284
285
286
287
288
  if training_dataset_cache:
    flags.DEFINE_boolean(
        name="training_dataset_cache",
        default=False,
        help=help_wrap(
            "Determines whether to cache the training dataset on workers. "
            "Typically used to improve training performance when training "
Hongkun Yu's avatar
Hongkun Yu committed
289
            "data is in remote storage and can fit into worker memory."))
290

291
292
293
294
295
  if tf_data_experimental_slack:
    flags.DEFINE_boolean(
        name="tf_data_experimental_slack",
        default=False,
        help=help_wrap(
Hongkun Yu's avatar
Hongkun Yu committed
296
            "Whether to enable tf.data's `experimental_slack` option."))
297

Toby Boyd's avatar
Toby Boyd committed
298
299
  if enable_xla:
    flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
300
301
        name="enable_xla",
        default=False,
Toby Boyd's avatar
Toby Boyd committed
302
303
        help="Whether to enable XLA auto jit compilation")

304
  return key_flags