_performance.py 11.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Register flags for optimizing performance."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import multiprocessing

from absl import flags    # pylint: disable=g-bad-import-order
import tensorflow as tf   # pylint: disable=g-bad-import-order

from official.utils.flags._conventions import help_wrap


29
# Map string to TensorFlow dtype
30
DTYPE_MAP = {
31
    "fp16": tf.float16,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
32
    "bf16": tf.bfloat16,
33
    "fp32": tf.float32,
34
35
36
37
}


def get_tf_dtype(flags_obj):
38
  if getattr(flags_obj, "fp16_implementation", None) == "graph_rewrite":
39
40
41
    # If the graph_rewrite is used, we build the graph with fp32, and let the
    # graph rewrite change ops to fp16.
    return tf.float32
42
  return DTYPE_MAP[flags_obj.dtype]
43
44


45
def get_loss_scale(flags_obj, default_for_fp16):
46
  dtype = get_tf_dtype(flags_obj)
47
  if flags_obj.loss_scale == "dynamic":
48
    return flags_obj.loss_scale
49
50
  elif flags_obj.loss_scale is not None:
    return float(flags_obj.loss_scale)
51
  elif dtype == tf.float32 or dtype == tf.bfloat16:
52
53
    return 1  # No loss scaling is needed for fp32
  else:
54
    assert dtype == tf.float16
55
    return default_for_fp16
56
57


58
def define_performance(num_parallel_calls=False, inter_op=False, intra_op=False,
59
60
                       synthetic_data=False, max_train_steps=False, dtype=False,
                       all_reduce_alg=False, num_packs=False,
61
                       tf_gpu_thread_mode=False,
Toby Boyd's avatar
Toby Boyd committed
62
                       datasets_num_private_threads=False,
63
                       datasets_num_parallel_batches=False,
64
                       dynamic_loss_scale=False, fp16_implementation=False,
65
                       loss_scale=False,
66
                       tf_data_experimental_slack=False, enable_xla=False,
67
                       training_dataset_cache=False):
68
69
70
71
72
73
74
75
76
77
  """Register flags for specifying performance tuning arguments.

  Args:
    num_parallel_calls: Create a flag to specify parallelism of data loading.
    inter_op: Create a flag to allow specification of inter op threads.
    intra_op: Create a flag to allow specification of intra op threads.
    synthetic_data: Create a flag to allow the use of synthetic data.
    max_train_steps: Create a flags to allow specification of maximum number
      of training steps
    dtype: Create flags for specifying dtype.
Toby Boyd's avatar
Toby Boyd committed
78
    all_reduce_alg: If set forces a specific algorithm for multi-gpu.
79
80
    num_packs: If set provides number of packs for MirroredStrategy's cross
      device ops.
Toby Boyd's avatar
Toby Boyd committed
81
82
    tf_gpu_thread_mode: gpu_private triggers us of private thread pool.
    datasets_num_private_threads: Number of private threads for datasets.
Toby Boyd's avatar
Toby Boyd committed
83
84
    datasets_num_parallel_batches: Determines how many batches to process in
    parallel when using map and batch from tf.data.
85
86
    dynamic_loss_scale: Allow the "loss_scale" flag to take on the value
      "dynamic". Only valid if `dtype` is True.
87
    fp16_implementation: Create fp16_implementation flag.
88
89
    loss_scale: Controls the loss scaling, normally for mixed-precision
      training. Can only be turned on if dtype is also True.
90
91
    tf_data_experimental_slack: Determines whether to enable tf.data's
      `experimental_slack` option.
Toby Boyd's avatar
Toby Boyd committed
92
    enable_xla: Determines if XLA (auto clustering) is turned on.
93
94
95
    training_dataset_cache: Whether to cache the training dataset on workers.
       Typically used to improve training performance when training data is in
       remote storage and can fit into worker memory.
Toby Boyd's avatar
Toby Boyd committed
96

97
98
99
100
101
102
103
104
  Returns:
    A list of flags for core.py to marks as key flags.
  """

  key_flags = []
  if num_parallel_calls:
    flags.DEFINE_integer(
        name="num_parallel_calls", short_name="npc",
Toby Boyd's avatar
Toby Boyd committed
105
        default=multiprocessing.cpu_count(),
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        help=help_wrap("The number of records that are  processed in parallel "
                       "during input processing. This can be optimized per "
                       "data set but for generally homogeneous data sets, "
                       "should be approximately the number of available CPU "
                       "cores. (default behavior)"))

  if inter_op:
    flags.DEFINE_integer(
        name="inter_op_parallelism_threads", short_name="inter", default=0,
        help=help_wrap("Number of inter_op_parallelism_threads to use for CPU. "
                       "See TensorFlow config.proto for details.")
    )

  if intra_op:
    flags.DEFINE_integer(
        name="intra_op_parallelism_threads", short_name="intra", default=0,
        help=help_wrap("Number of intra_op_parallelism_threads to use for CPU. "
                       "See TensorFlow config.proto for details."))

  if synthetic_data:
    flags.DEFINE_bool(
        name="use_synthetic_data", short_name="synth", default=False,
        help=help_wrap(
            "If set, use fake data (zeroes) instead of a real dataset. "
            "This mode is useful for performance debugging, as it removes "
            "input processing steps, but will not learn anything."))

  if max_train_steps:
    flags.DEFINE_integer(
        name="max_train_steps", short_name="mts", default=None, help=help_wrap(
            "The model will stop training if the global_step reaches this "
            "value. If not set, training will run until the specified number "
            "of epochs have run as usual. It is generally recommended to set "
            "--train_epochs=1 when using this flag."
        ))

  if dtype:
    flags.DEFINE_enum(
        name="dtype", short_name="dt", default="fp32",
        enum_values=DTYPE_MAP.keys(),
        help=help_wrap("The TensorFlow datatype used for calculations. "
                       "Variables may be cast to a higher precision on a "
                       "case-by-case basis for numerical stability."))

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    loss_scale_help_text = (
        "The amount to scale the loss by when the model is run. {}. Before "
        "gradients are computed, the loss is multiplied by the loss scale, "
        "making all gradients loss_scale times larger. To adjust for this, "
        "gradients are divided by the loss scale before being applied to "
        "variables. This is mathematically equivalent to training without "
        "a loss scale, but the loss scale helps avoid some intermediate "
        "gradients from underflowing to zero. If not provided the default "
        "for fp16 is 128 and 1 for all other dtypes.{}"
    )
    if dynamic_loss_scale:
      loss_scale_help_text = loss_scale_help_text.format(
          "This can be an int/float or the string 'dynamic'",
          " The string 'dynamic' can be used to dynamically determine the "
          "optimal loss scale during training, but currently this "
          "significantly slows down performance")
      loss_scale_validation_msg = ("loss_scale should be a positive int/float "
                                   "or the string 'dynamic'.")
    else:
      loss_scale_help_text = loss_scale_help_text.format(
          "This must be an int/float", "")
      loss_scale_validation_msg = "loss_scale should be a positive int/float."
172
173
174
175
    if loss_scale:
      flags.DEFINE_string(
          name="loss_scale", short_name="ls", default=None,
          help=help_wrap(loss_scale_help_text))
176

177
178
179
180
181
182
      @flags.validator(flag_name="loss_scale",
                       message=loss_scale_validation_msg)
      def _check_loss_scale(loss_scale):  # pylint: disable=unused-variable
        """Validator to check the loss scale flag is valid."""
        if loss_scale is None:
          return True  # null case is handled in get_loss_scale()
183

184
185
        if loss_scale == "dynamic" and dynamic_loss_scale:
          return True
186

187
188
189
190
        try:
          loss_scale = float(loss_scale)
        except ValueError:
          return False
191

192
        return loss_scale > 0
193

194
195
    if fp16_implementation:
      flags.DEFINE_enum(
196
197
          name="fp16_implementation", default="keras",
          enum_values=("keras', 'graph_rewrite"),
198
199
          help=help_wrap(
              "When --dtype=fp16, how fp16 should be implemented. This has no "
200
201
202
203
              "impact on correctness. 'keras' uses the "
              "tf.keras.mixed_precision API. 'graph_rewrite' uses the "
              "tf.train.experimental.enable_mixed_precision_graph_rewrite "
              "API."))
204

205
206
      @flags.multi_flags_validator(["fp16_implementation", "dtype",
                                    "loss_scale"])
207
208
      def _check_fp16_implementation(flags_dict):
        """Validator to check fp16_implementation flag is valid."""
209
210
211
212
        if (flags_dict["fp16_implementation"] == "graph_rewrite" and
            flags_dict["dtype"] != "fp16"):
          raise flags.ValidationError("--fp16_implementation should not be "
                                      "specified unless --dtype=fp16")
213
214
        return True

215
216
217
218
  if all_reduce_alg:
    flags.DEFINE_string(
        name="all_reduce_alg", short_name="ara", default=None,
        help=help_wrap("Defines the algorithm to use for performing all-reduce."
219
220
221
222
223
224
225
                       "When specified with MirroredStrategy for single "
                       "worker, this controls "
                       "tf.contrib.distribute.AllReduceCrossTowerOps.  When "
                       "specified with MultiWorkerMirroredStrategy, this "
                       "controls "
                       "tf.distribute.experimental.CollectiveCommunication; "
                       "valid options are `ring` and `nccl`."))
226

227
228
229
230
231
232
233
  if num_packs:
    flags.DEFINE_integer(
        name="num_packs", default=1,
        help=help_wrap("Sets `num_packs` in the cross device ops used in "
                       "MirroredStrategy.  For details, see "
                       "tf.distribute.NcclAllReduce."))

Toby Boyd's avatar
Toby Boyd committed
234
235
  if tf_gpu_thread_mode:
    flags.DEFINE_string(
Toby Boyd's avatar
Toby Boyd committed
236
        name="tf_gpu_thread_mode", short_name="gt_mode", default=None,
Toby Boyd's avatar
Toby Boyd committed
237
238
239
240
        help=help_wrap(
            "Whether and how the GPU device uses its own threadpool.")
    )

241
242
243
244
245
246
247
    flags.DEFINE_integer(
        name="per_gpu_thread_count", short_name="pgtc", default=0,
        help=help_wrap(
            "The number of threads to use for GPU. Only valid when "
            "tf_gpu_thread_mode is not global.")
    )

Toby Boyd's avatar
Toby Boyd committed
248
249
  if datasets_num_private_threads:
    flags.DEFINE_integer(
Toby Boyd's avatar
Toby Boyd committed
250
        name="datasets_num_private_threads",
Toby Boyd's avatar
Toby Boyd committed
251
252
253
254
255
        default=None,
        help=help_wrap(
            "Number of threads for a private threadpool created for all"
            "datasets computation..")
    )
256

Toby Boyd's avatar
Toby Boyd committed
257
258
259
260
261
262
263
264
265
  if datasets_num_parallel_batches:
    flags.DEFINE_integer(
        name="datasets_num_parallel_batches",
        default=None,
        help=help_wrap(
            "Determines how many batches to process in parallel when using "
            "map and batch from tf.data.")
    )

266
267
268
269
270
271
272
273
274
275
  if training_dataset_cache:
    flags.DEFINE_boolean(
        name="training_dataset_cache",
        default=False,
        help=help_wrap(
            "Determines whether to cache the training dataset on workers. "
            "Typically used to improve training performance when training "
            "data is in remote storage and can fit into worker memory.")
    )

276
277
278
279
280
281
282
283
  if tf_data_experimental_slack:
    flags.DEFINE_boolean(
        name="tf_data_experimental_slack",
        default=False,
        help=help_wrap(
            "Whether to enable tf.data's `experimental_slack` option.")
    )

Toby Boyd's avatar
Toby Boyd committed
284
285
286
287
288
  if enable_xla:
    flags.DEFINE_boolean(
        name="enable_xla", default=False,
        help="Whether to enable XLA auto jit compilation")

289
  return key_flags