"docs/en/data_preparation.md" did not exist on "a0090aa1841562c7e046b3d31a3988e96a97d4a4"
optimizer_factory.py 5.23 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Optimizer factory class."""
from typing import Union


Abdullah Rashwan's avatar
Abdullah Rashwan committed
20
import tensorflow as tf
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
22
import tensorflow_addons.optimizers as tfa_optimizers

Abdullah Rashwan's avatar
Abdullah Rashwan committed
23
from official.modeling.optimization import ema_optimizer
Abdullah Rashwan's avatar
Abdullah Rashwan committed
24
25
26
27
28
29
30
31
from official.modeling.optimization import lr_schedule
from official.modeling.optimization.configs import optimization_config as opt_cfg
from official.nlp import optimization as nlp_optimization

OPTIMIZERS_CLS = {
    'sgd': tf.keras.optimizers.SGD,
    'adam': tf.keras.optimizers.Adam,
    'adamw': nlp_optimization.AdamWeightDecay,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
32
33
    'lamb': tfa_optimizers.LAMB,
    'rmsprop': tf.keras.optimizers.RMSprop
Abdullah Rashwan's avatar
Abdullah Rashwan committed
34
35
36
37
38
39
}

LR_CLS = {
    'stepwise': tf.keras.optimizers.schedules.PiecewiseConstantDecay,
    'polynomial': tf.keras.optimizers.schedules.PolynomialDecay,
    'exponential': tf.keras.optimizers.schedules.ExponentialDecay,
40
41
    'cosine': tf.keras.experimental.CosineDecay,
    'power': lr_schedule.DirectPowerDecay,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
42
43
44
}

WARMUP_CLS = {
Abdullah Rashwan's avatar
Abdullah Rashwan committed
45
46
    'linear': lr_schedule.LinearWarmup,
    'polynomial': lr_schedule.PolynomialWarmUp
Abdullah Rashwan's avatar
Abdullah Rashwan committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
}


class OptimizerFactory(object):
  """Optimizer factory class.

  This class builds learning rate and optimizer based on an optimization config.
  To use this class, you need to do the following:
  (1) Define optimization config, this includes optimizer, and learning rate
      schedule.
  (2) Initialize the class using the optimization config.
  (3) Build learning rate.
  (4) Build optimizer.

  This is a typical example for using this class:
  params = {
        'optimizer': {
            'type': 'sgd',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
65
            'sgd': {'momentum': 0.9}
Abdullah Rashwan's avatar
Abdullah Rashwan committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        },
        'learning_rate': {
            'type': 'stepwise',
            'stepwise': {'boundaries': [10000, 20000],
                         'values': [0.1, 0.01, 0.001]}
        },
        'warmup': {
            'type': 'linear',
            'linear': {'warmup_steps': 500, 'warmup_learning_rate': 0.01}
        }
    }
  opt_config = OptimizationConfig(params)
  opt_factory = OptimizerFactory(opt_config)
  lr = opt_factory.build_learning_rate()
  optimizer = opt_factory.build_optimizer(lr)
  """

  def __init__(self, config: opt_cfg.OptimizationConfig):
    """Initializing OptimizerFactory.

    Args:
      config: OptimizationConfig instance contain optimization config.
    """
    self._config = config
    self._optimizer_config = config.optimizer.get()
    self._optimizer_type = config.optimizer.type

Abdullah Rashwan's avatar
Abdullah Rashwan committed
93
94
95
96
    self._use_ema = config.ema is not None
    self._ema_config = config.ema

    if self._optimizer_config is None:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
97
98
99
100
101
      raise ValueError('Optimizer type must be specified')

    self._lr_config = config.learning_rate.get()
    self._lr_type = config.learning_rate.type

Abdullah Rashwan's avatar
Abdullah Rashwan committed
102
103
104
    if self._lr_type is None:
      raise ValueError('Learning rate type must be specified')

Abdullah Rashwan's avatar
Abdullah Rashwan committed
105
106
107
108
109
110
111
    self._warmup_config = config.warmup.get()
    self._warmup_type = config.warmup.type

  def build_learning_rate(self):
    """Build learning rate.

    Builds learning rate from config. Learning rate schedule is built according
Abdullah Rashwan's avatar
Abdullah Rashwan committed
112
113
    to the learning rate config. If learning rate type is consant,
    lr_config.learning_rate is returned.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
114
115

    Returns:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
116
117
      tf.keras.optimizers.schedules.LearningRateSchedule instance. If
      learning rate type is consant, lr_config.learning_rate is returned.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
118
    """
Abdullah Rashwan's avatar
Abdullah Rashwan committed
119
120
    if self._lr_type == 'constant':
      lr = self._lr_config.learning_rate
Abdullah Rashwan's avatar
Abdullah Rashwan committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    else:
      lr = LR_CLS[self._lr_type](**self._lr_config.as_dict())

    if self._warmup_config:
      lr = WARMUP_CLS[self._warmup_type](lr, **self._warmup_config.as_dict())

    return lr

  def build_optimizer(
      self, lr: Union[tf.keras.optimizers.schedules.LearningRateSchedule,
                      float]):
    """Build optimizer.

    Builds optimizer from config. It takes learning rate as input, and builds
    the optimizer according to the optimizer config. Typically, the learning
    rate built using self.build_lr() is passed as an argument to this method.

    Args:
Hongkun Yu's avatar
Hongkun Yu committed
139
140
141
      lr: A floating point value, or a
        tf.keras.optimizers.schedules.LearningRateSchedule instance.

Abdullah Rashwan's avatar
Abdullah Rashwan committed
142
143
144
145
146
    Returns:
      tf.keras.optimizers.Optimizer instance.
    """

    optimizer_dict = self._optimizer_config.as_dict()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
147
148
149
150
151
152
    ## Delete clipnorm and clipvalue if None
    if optimizer_dict['clipnorm'] is None:
      del optimizer_dict['clipnorm']
    if optimizer_dict['clipvalue'] is None:
      del optimizer_dict['clipvalue']

Abdullah Rashwan's avatar
Abdullah Rashwan committed
153
154
155
    optimizer_dict['learning_rate'] = lr

    optimizer = OPTIMIZERS_CLS[self._optimizer_type](**optimizer_dict)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
156
157
158
159
160

    if self._use_ema:
      optimizer = ema_optimizer.ExponentialMovingAverage(
          optimizer, **self._ema_config.as_dict())

Abdullah Rashwan's avatar
Abdullah Rashwan committed
161
    return optimizer