optimizer_factory.py 4.72 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Optimizer factory class."""
from typing import Union

import tensorflow as tf

import tensorflow_addons.optimizers as tfa_optimizers

from official.modeling.optimization import lr_schedule
from official.modeling.optimization.configs import optimization_config as opt_cfg
from official.nlp import optimization as nlp_optimization

OPTIMIZERS_CLS = {
    'sgd': tf.keras.optimizers.SGD,
    'adam': tf.keras.optimizers.Adam,
    'adamw': nlp_optimization.AdamWeightDecay,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
31
32
    'lamb': tfa_optimizers.LAMB,
    'rmsprop': tf.keras.optimizers.RMSprop
Abdullah Rashwan's avatar
Abdullah Rashwan committed
33
34
35
36
37
38
}

LR_CLS = {
    'stepwise': tf.keras.optimizers.schedules.PiecewiseConstantDecay,
    'polynomial': tf.keras.optimizers.schedules.PolynomialDecay,
    'exponential': tf.keras.optimizers.schedules.ExponentialDecay,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
39
    'cosine': tf.keras.experimental.CosineDecay
Abdullah Rashwan's avatar
Abdullah Rashwan committed
40
41
42
}

WARMUP_CLS = {
Abdullah Rashwan's avatar
Abdullah Rashwan committed
43
44
    'linear': lr_schedule.LinearWarmup,
    'polynomial': lr_schedule.PolynomialWarmUp
Abdullah Rashwan's avatar
Abdullah Rashwan committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
}


class OptimizerFactory(object):
  """Optimizer factory class.

  This class builds learning rate and optimizer based on an optimization config.
  To use this class, you need to do the following:
  (1) Define optimization config, this includes optimizer, and learning rate
      schedule.
  (2) Initialize the class using the optimization config.
  (3) Build learning rate.
  (4) Build optimizer.

  This is a typical example for using this class:
  params = {
        'optimizer': {
            'type': 'sgd',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
63
            'sgd': {'momentum': 0.9}
Abdullah Rashwan's avatar
Abdullah Rashwan committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        },
        'learning_rate': {
            'type': 'stepwise',
            'stepwise': {'boundaries': [10000, 20000],
                         'values': [0.1, 0.01, 0.001]}
        },
        'warmup': {
            'type': 'linear',
            'linear': {'warmup_steps': 500, 'warmup_learning_rate': 0.01}
        }
    }
  opt_config = OptimizationConfig(params)
  opt_factory = OptimizerFactory(opt_config)
  lr = opt_factory.build_learning_rate()
  optimizer = opt_factory.build_optimizer(lr)
  """

  def __init__(self, config: opt_cfg.OptimizationConfig):
    """Initializing OptimizerFactory.

    Args:
      config: OptimizationConfig instance contain optimization config.
    """
    self._config = config
    self._optimizer_config = config.optimizer.get()
    self._optimizer_type = config.optimizer.type

Abdullah Rashwan's avatar
Abdullah Rashwan committed
91
    if self._optimizer_type is None:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
92
93
94
95
96
      raise ValueError('Optimizer type must be specified')

    self._lr_config = config.learning_rate.get()
    self._lr_type = config.learning_rate.type

Abdullah Rashwan's avatar
Abdullah Rashwan committed
97
98
99
    if self._lr_type is None:
      raise ValueError('Learning rate type must be specified')

Abdullah Rashwan's avatar
Abdullah Rashwan committed
100
101
102
103
104
105
106
    self._warmup_config = config.warmup.get()
    self._warmup_type = config.warmup.type

  def build_learning_rate(self):
    """Build learning rate.

    Builds learning rate from config. Learning rate schedule is built according
Abdullah Rashwan's avatar
Abdullah Rashwan committed
107
108
    to the learning rate config. If learning rate type is consant,
    lr_config.learning_rate is returned.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
109
110

    Returns:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
111
112
      tf.keras.optimizers.schedules.LearningRateSchedule instance. If
      learning rate type is consant, lr_config.learning_rate is returned.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
113
    """
Abdullah Rashwan's avatar
Abdullah Rashwan committed
114
115
    if self._lr_type == 'constant':
      lr = self._lr_config.learning_rate
Abdullah Rashwan's avatar
Abdullah Rashwan committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    else:
      lr = LR_CLS[self._lr_type](**self._lr_config.as_dict())

    if self._warmup_config:
      lr = WARMUP_CLS[self._warmup_type](lr, **self._warmup_config.as_dict())

    return lr

  def build_optimizer(
      self, lr: Union[tf.keras.optimizers.schedules.LearningRateSchedule,
                      float]):
    """Build optimizer.

    Builds optimizer from config. It takes learning rate as input, and builds
    the optimizer according to the optimizer config. Typically, the learning
    rate built using self.build_lr() is passed as an argument to this method.

    Args:
      lr: A floating point value, or
          a tf.keras.optimizers.schedules.LearningRateSchedule instance.
    Returns:
      tf.keras.optimizers.Optimizer instance.
    """

    optimizer_dict = self._optimizer_config.as_dict()
    optimizer_dict['learning_rate'] = lr

    optimizer = OPTIMIZERS_CLS[self._optimizer_type](**optimizer_dict)
    return optimizer