"src/targets/vscode:/vscode.git/clone" did not exist on "9607aef2674ffa5452e6b4aa48760e5e8e23a37a"
anchor.py 20.2 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

15
16
17
18
19
20
21
"""Anchor box and labeler definition."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
Hongkun Yu's avatar
Hongkun Yu committed
22

23
import tensorflow as tf
Zhenyu Tan's avatar
Zhenyu Tan committed
24
from official.vision import keras_cv
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
from official.vision.detection.utils import box_utils
26
27
28
29
30
31
32
33
34
35
from official.vision.detection.utils.object_detection import argmax_matcher
from official.vision.detection.utils.object_detection import balanced_positive_negative_sampler
from official.vision.detection.utils.object_detection import box_list
from official.vision.detection.utils.object_detection import faster_rcnn_box_coder
from official.vision.detection.utils.object_detection import target_assigner


class Anchor(object):
  """Anchor class for anchor-based object detectors."""

Hongkun Yu's avatar
Hongkun Yu committed
36
37
  def __init__(self, min_level, max_level, num_scales, aspect_ratios,
               anchor_size, image_size):
38
39
40
41
42
    """Constructs multiscale anchors.

    Args:
      min_level: integer number of minimum level of the output feature pyramid.
      max_level: integer number of maximum level of the output feature pyramid.
Hongkun Yu's avatar
Hongkun Yu committed
43
44
45
      num_scales: integer number representing intermediate scales added on each
        level. For instances, num_scales=2 adds one additional intermediate
        anchor scales [2^0, 2^0.5] on each level.
Srihari Humbarwadi's avatar
Srihari Humbarwadi committed
46
      aspect_ratios: list of float numbers representing the aspect ratio anchors
47
48
49
50
51
        added on each level. The number indicates the ratio of width to height.
        For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors on each
        scale level.
      anchor_size: float number representing the scale of size of the base
        anchor to the feature stride 2^level.
Hongkun Yu's avatar
Hongkun Yu committed
52
53
54
      image_size: a list of integer numbers or Tensors representing [height,
        width] of the input image size.The image_size should be divisible by the
        largest feature stride 2^max_level.
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    """
    self.min_level = min_level
    self.max_level = max_level
    self.num_scales = num_scales
    self.aspect_ratios = aspect_ratios
    self.anchor_size = anchor_size
    self.image_size = image_size
    self.boxes = self._generate_boxes()

  def _generate_boxes(self):
    """Generates multiscale anchor boxes.

    Returns:
      a Tensor of shape [N, 4], represneting anchor boxes of all levels
      concatenated together.
    """
    boxes_all = []
    for level in range(self.min_level, self.max_level + 1):
      boxes_l = []
      for scale in range(self.num_scales):
        for aspect_ratio in self.aspect_ratios:
Hongkun Yu's avatar
Hongkun Yu committed
76
77
          stride = 2**level
          intermediate_scale = 2**(scale / float(self.num_scales))
Srihari Humbarwadi's avatar
Srihari Humbarwadi committed
78
          base_anchor_size = self.anchor_size * stride * intermediate_scale
Hongkun Yu's avatar
Hongkun Yu committed
79
80
          aspect_x = aspect_ratio**0.5
          aspect_y = aspect_ratio**-0.5
81
82
83
84
85
86
87
88
          half_anchor_size_x = base_anchor_size * aspect_x / 2.0
          half_anchor_size_y = base_anchor_size * aspect_y / 2.0
          x = tf.range(stride / 2, self.image_size[1], stride)
          y = tf.range(stride / 2, self.image_size[0], stride)
          xv, yv = tf.meshgrid(x, y)
          xv = tf.cast(tf.reshape(xv, [-1]), dtype=tf.float32)
          yv = tf.cast(tf.reshape(yv, [-1]), dtype=tf.float32)
          # Tensor shape Nx4.
Hongkun Yu's avatar
Hongkun Yu committed
89
90
91
92
          boxes = tf.stack([
              yv - half_anchor_size_y, xv - half_anchor_size_x,
              yv + half_anchor_size_y, xv + half_anchor_size_x
          ],
93
94
95
96
97
98
99
100
101
102
103
104
105
                           axis=1)
          boxes_l.append(boxes)
      # Concat anchors on the same level to tensor shape NxAx4.
      boxes_l = tf.stack(boxes_l, axis=1)
      boxes_l = tf.reshape(boxes_l, [-1, 4])
      boxes_all.append(boxes_l)
    return tf.concat(boxes_all, axis=0)

  def unpack_labels(self, labels):
    """Unpacks an array of labels into multiscales labels."""
    unpacked_labels = collections.OrderedDict()
    count = 0
    for level in range(self.min_level, self.max_level + 1):
Hongkun Yu's avatar
Hongkun Yu committed
106
107
      feat_size_y = tf.cast(self.image_size[0] / 2**level, tf.int32)
      feat_size_x = tf.cast(self.image_size[1] / 2**level, tf.int32)
108
      steps = feat_size_y * feat_size_x * self.anchors_per_location
Hongkun Yu's avatar
Hongkun Yu committed
109
110
      unpacked_labels[level] = tf.reshape(labels[count:count + steps],
                                          [feat_size_y, feat_size_x, -1])
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
      count += steps
    return unpacked_labels

  @property
  def anchors_per_location(self):
    return self.num_scales * len(self.aspect_ratios)

  @property
  def multilevel_boxes(self):
    return self.unpack_labels(self.boxes)


class AnchorLabeler(object):
  """Labeler for dense object detector."""

Hongkun Yu's avatar
Hongkun Yu committed
126
  def __init__(self, anchor, match_threshold=0.5, unmatched_threshold=0.5):
127
128
129
130
131
132
133
134
135
136
137
    """Constructs anchor labeler to assign labels to anchors.

    Args:
      anchor: an instance of class Anchors.
      match_threshold: a float number between 0 and 1 representing the
        lower-bound threshold to assign positive labels for anchors. An anchor
        with a score over the threshold is labeled positive.
      unmatched_threshold: a float number between 0 and 1 representing the
        upper-bound threshold to assign negative labels for anchors. An anchor
        with a score below the threshold is labeled negative.
    """
Zhenyu Tan's avatar
Zhenyu Tan committed
138
    similarity_calc = keras_cv.ops.IouSimilarity()
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    matcher = argmax_matcher.ArgMaxMatcher(
        match_threshold,
        unmatched_threshold=unmatched_threshold,
        negatives_lower_than_unmatched=True,
        force_match_for_each_row=True)
    box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder()

    self._target_assigner = target_assigner.TargetAssigner(
        similarity_calc, matcher, box_coder)
    self._anchor = anchor
    self._match_threshold = match_threshold
    self._unmatched_threshold = unmatched_threshold

  def label_anchors(self, gt_boxes, gt_labels):
    """Labels anchors with ground truth inputs.

    Args:
      gt_boxes: A float tensor with shape [N, 4] representing groundtruth boxes.
        For each row, it stores [y0, x0, y1, x1] for four corners of a box.
      gt_labels: A integer tensor with shape [N, 1] representing groundtruth
        classes.
Hongkun Yu's avatar
Hongkun Yu committed
160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    Returns:
      cls_targets_dict: ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors_per_location]. The height_l and
        width_l represent the dimension of class logits at l-th level.
      box_targets_dict: ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors_per_location * 4]. The height_l
        and width_l represent the dimension of bounding box regression output at
        l-th level.
      num_positives: scalar tensor storing number of positives in an image.
    """
    gt_box_list = box_list.BoxList(gt_boxes)
    anchor_box_list = box_list.BoxList(self._anchor.boxes)

    # The cls_weights, box_weights are not used.
    cls_targets, _, box_targets, _, matches = self._target_assigner.assign(
        anchor_box_list, gt_box_list, gt_labels)

    # Labels definition in matches.match_results:
    # (1) match_results[i]>=0, meaning that column i is matched with row
    #     match_results[i].
    # (2) match_results[i]=-1, meaning that column i is not matched.
    # (3) match_results[i]=-2, meaning that column i is ignored.
    match_results = tf.expand_dims(matches.match_results, axis=1)
    cls_targets = tf.cast(cls_targets, tf.int32)
    cls_targets = tf.where(
        tf.equal(match_results, -1), -tf.ones_like(cls_targets), cls_targets)
    cls_targets = tf.where(
        tf.equal(match_results, -2), -2 * tf.ones_like(cls_targets),
        cls_targets)

    # Unpacks labels into multi-level representations.
    cls_targets_dict = self._anchor.unpack_labels(cls_targets)
    box_targets_dict = self._anchor.unpack_labels(box_targets)
    num_positives = tf.reduce_sum(
        input_tensor=tf.cast(tf.greater(matches.match_results, -1), tf.float32))

    return cls_targets_dict, box_targets_dict, num_positives


class RpnAnchorLabeler(AnchorLabeler):
  """Labeler for Region Proposal Network."""

Hongkun Yu's avatar
Hongkun Yu committed
205
206
207
208
209
  def __init__(self,
               anchor,
               match_threshold=0.7,
               unmatched_threshold=0.3,
               rpn_batch_size_per_im=256,
210
               rpn_fg_fraction=0.5):
Hongkun Yu's avatar
Hongkun Yu committed
211
212
    AnchorLabeler.__init__(
        self, anchor, match_threshold=0.7, unmatched_threshold=0.3)
213
214
215
216
217
218
219
220
221
    self._rpn_batch_size_per_im = rpn_batch_size_per_im
    self._rpn_fg_fraction = rpn_fg_fraction

  def _get_rpn_samples(self, match_results):
    """Computes anchor labels.

    This function performs subsampling for foreground (fg) and background (bg)
    anchors.
    Args:
Hongkun Yu's avatar
Hongkun Yu committed
222
223
224
225
226
227
      match_results: A integer tensor with shape [N] representing the matching
        results of anchors. (1) match_results[i]>=0, meaning that column i is
        matched with row match_results[i]. (2) match_results[i]=-1, meaning that
        column i is not matched. (3) match_results[i]=-2, meaning that column i
        is ignored.

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    Returns:
      score_targets: a integer tensor with the a shape of [N].
        (1) score_targets[i]=1, the anchor is a positive sample.
        (2) score_targets[i]=0, negative. (3) score_targets[i]=-1, the anchor is
        don't care (ignore).
    """
    sampler = (
        balanced_positive_negative_sampler.BalancedPositiveNegativeSampler(
            positive_fraction=self._rpn_fg_fraction, is_static=False))
    # indicator includes both positive and negative labels.
    # labels includes only positives labels.
    # positives = indicator & labels.
    # negatives = indicator & !labels.
    # ignore = !indicator.
    indicator = tf.greater(match_results, -2)
    labels = tf.greater(match_results, -1)

Hongkun Yu's avatar
Hongkun Yu committed
245
    samples = sampler.subsample(indicator, self._rpn_batch_size_per_im, labels)
246
247
248
249
250
251
252
253
254
255
    positive_labels = tf.where(
        tf.logical_and(samples, labels),
        tf.constant(2, dtype=tf.int32, shape=match_results.shape),
        tf.constant(0, dtype=tf.int32, shape=match_results.shape))
    negative_labels = tf.where(
        tf.logical_and(samples, tf.logical_not(labels)),
        tf.constant(1, dtype=tf.int32, shape=match_results.shape),
        tf.constant(0, dtype=tf.int32, shape=match_results.shape))
    ignore_labels = tf.fill(match_results.shape, -1)

Hongkun Yu's avatar
Hongkun Yu committed
256
257
    return (ignore_labels + positive_labels + negative_labels, positive_labels,
            negative_labels)
258
259
260
261
262
263
264
265
266

  def label_anchors(self, gt_boxes, gt_labels):
    """Labels anchors with ground truth inputs.

    Args:
      gt_boxes: A float tensor with shape [N, 4] representing groundtruth boxes.
        For each row, it stores [y0, x0, y1, x1] for four corners of a box.
      gt_labels: A integer tensor with shape [N, 1] representing groundtruth
        classes.
Hongkun Yu's avatar
Hongkun Yu committed
267

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    Returns:
      score_targets_dict: ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors]. The height_l and width_l
        represent the dimension of class logits at l-th level.
      box_targets_dict: ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors * 4]. The height_l and
        width_l represent the dimension of bounding box regression output at
        l-th level.
    """
    gt_box_list = box_list.BoxList(gt_boxes)
    anchor_box_list = box_list.BoxList(self._anchor.boxes)

    # cls_targets, cls_weights, box_weights are not used.
    _, _, box_targets, _, matches = self._target_assigner.assign(
        anchor_box_list, gt_box_list, gt_labels)

    # score_targets contains the subsampled positive and negative anchors.
    score_targets, _, _ = self._get_rpn_samples(matches.match_results)

    # Unpacks labels.
    score_targets_dict = self._anchor.unpack_labels(score_targets)
    box_targets_dict = self._anchor.unpack_labels(box_targets)

    return score_targets_dict, box_targets_dict
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458


class OlnAnchorLabeler(RpnAnchorLabeler):
  """Labeler for Region Proposal Network."""

  def __init__(self,
               anchor,
               match_threshold=0.7,
               unmatched_threshold=0.3,
               rpn_batch_size_per_im=256,
               rpn_fg_fraction=0.5,
               has_centerness=False,
               center_match_iou_threshold=0.3,
               center_unmatched_iou_threshold=0.1,
               num_center_samples_per_im=256):
    """Constructs rpn anchor labeler to assign labels and centerness to anchors.

    Args:
      anchor: an instance of class Anchors.
      match_threshold: a float number between 0 and 1 representing the
        lower-bound threshold to assign positive labels for anchors. An anchor
        with a score over the threshold is labeled positive.
      unmatched_threshold: a float number between 0 and 1 representing the
        upper-bound threshold to assign negative labels for anchors. An anchor
        with a score below the threshold is labeled negative.
      rpn_batch_size_per_im: number of anchors that are sampled per image.
      rpn_fg_fraction:
      has_centerness: whether to include centerness target creation. An anchor
        is paired with one centerness score.
      center_match_iou_threshold: a float number between 0 and 1 representing
        the lower-bound threshold to sample foreground anchors for centerness
        regression. An anchor with a score over the threshold is sampled as
        foreground sample for centerness regression. We sample mostly from the
        foreground region (255 out of 256 samples). That is, we sample 255 vs 1
        (foreground vs background) anchor points to learn centerness regression.
      center_unmatched_iou_threshold: a float number between 0 and 1
        representing the lower-bound threshold to sample background anchors for
        centerness regression. An anchor with a score over the threshold is
        sampled as foreground sample for centerness regression. We sample very
        sparsely from the background region (1 out of 256 samples). That is, we
        sample 255 vs 1 (foreground vs background) anchor points to learn
        centerness regression.
      num_center_samples_per_im: number of anchor points per image that are
        sampled as centerness targets.
    """
    super(OlnAnchorLabeler, self).__init__(
        anchor, match_threshold=match_threshold,
        unmatched_threshold=unmatched_threshold,
        rpn_batch_size_per_im=rpn_batch_size_per_im,
        rpn_fg_fraction=rpn_fg_fraction)
    similarity_calc = keras_cv.ops.IouSimilarity()
    matcher = argmax_matcher.ArgMaxMatcher(
        match_threshold,
        unmatched_threshold=unmatched_threshold,
        negatives_lower_than_unmatched=True,
        force_match_for_each_row=True)
    box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder()
    if has_centerness:
      center_matcher = argmax_matcher.ArgMaxMatcher(
          center_match_iou_threshold,
          unmatched_threshold=center_match_iou_threshold,
          negatives_lower_than_unmatched=True,
          force_match_for_each_row=True,)
    else:
      center_matcher = None

    self._target_assigner = target_assigner.OlnTargetAssigner(
        similarity_calc, matcher, box_coder,
        center_matcher=center_matcher)
    self._num_center_samples_per_im = num_center_samples_per_im
    self._center_unmatched_iou_threshold = center_unmatched_iou_threshold
    self._rpn_batch_size_per_im = rpn_batch_size_per_im
    self._rpn_fg_fraction = rpn_fg_fraction

  def label_anchors_lrtb(self, gt_boxes, gt_labels):
    """Labels anchors with ground truth inputs.

    Args:
      gt_boxes: A float tensor with shape [N, 4] representing groundtruth boxes.
        For each row, it stores [y0, x0, y1, x1] for four corners of a box.
      gt_labels: A integer tensor with shape [N, 1] representing groundtruth
        classes.

    Returns:
      score_targets_dict: ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors]. The height_l and width_l
        represent the dimension of class logits at l-th level.
      box_targets_dict: ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors * 4]. The height_l and
        width_l represent the dimension of bounding box regression output at
        l-th level.
      lrtb_targets_dict: Same strucure to box_target_dict, except the regression
        targets are converted from xyhw to lrtb format. Ordered dictionary with
        keys [min_level, min_level+1, ..., max_level]. The values are tensor
        with shape [height_l, width_l, num_anchors * 4]. The height_l and
        width_l represent the dimension of bounding box regression output at
        l-th level.
      center_targets_dict: Same structure to score_tragets_dict, except the
        scores are centerness values ranging from 0 to 1. Ordered dictionary
        with keys [min_level, min_level+1, ..., max_level]. The values are
        tensor with shape [height_l, width_l, num_anchors]. The height_l and
        width_l represent the dimension of class logits at l-th level.
    """
    gt_box_list = box_list.BoxList(gt_boxes)
    anchor_box_list = box_list.BoxList(self._anchor.boxes)

    # cls_targets, cls_weights, box_weights are not used.
    (_, _, box_targets, _, matches,
     matched_gt_box_list, matched_anchors_mask,
     center_matched_gt_box_list, center_matched_anchors_mask,
     matched_ious) = self._target_assigner.assign(
         anchor_box_list, gt_box_list, gt_labels)
    # Box lrtb_targets.
    lrtb_targets, _ = box_utils.encode_boxes_lrtb(
        matched_gt_box_list.data['boxes'],
        anchor_box_list.data['boxes'],
        weights=[1.0, 1.0, 1.0, 1.0])
    lrtb_sanity = tf.logical_and(
        tf.greater(tf.reduce_min(lrtb_targets, -1), 0.),
        matched_anchors_mask)
    # To broadcast lrtb_sanity to the same shape as lrtb_targets.
    lrtb_sanity = tf.tile(tf.expand_dims(lrtb_sanity, 1),
                          [1, tf.shape(lrtb_targets)[1]])
    lrtb_targets = tf.where(lrtb_sanity,
                            lrtb_targets,
                            tf.zeros_like(lrtb_targets))
    # RPN anchor-gtbox iou values.
    iou_targets = tf.where(tf.greater(matched_ious, 0.0),
                           matched_ious,
                           tf.zeros_like(matched_ious))
    # Centerness_targets.
    _, center_targets = box_utils.encode_boxes_lrtb(
        center_matched_gt_box_list.data['boxes'],
        anchor_box_list.data['boxes'],
        weights=[1.0, 1.0, 1.0, 1.0])
    # Positive-negative centerness sampler.
    num_center_samples_per_im = self._num_center_samples_per_im
    center_pos_neg_sampler = (
        balanced_positive_negative_sampler.BalancedPositiveNegativeSampler(
            positive_fraction=(1.- 1./num_center_samples_per_im),
            is_static=False))
    center_pos_neg_indicator = tf.logical_or(
        center_matched_anchors_mask,
        tf.less(iou_targets, self._center_unmatched_iou_threshold))
    center_pos_labels = center_matched_anchors_mask
    center_samples = center_pos_neg_sampler.subsample(
        center_pos_neg_indicator, num_center_samples_per_im, center_pos_labels)
    is_valid = center_samples
    center_targets = tf.where(is_valid,
                              center_targets,
                              (-1) * tf.ones_like(center_targets))

    # score_targets contains the subsampled positive and negative anchors.
    score_targets, _, _ = self._get_rpn_samples(matches.match_results)

    # Unpacks labels.
    score_targets_dict = self._anchor.unpack_labels(score_targets)
    box_targets_dict = self._anchor.unpack_labels(box_targets)
    lrtb_targets_dict = self._anchor.unpack_labels(lrtb_targets)
    center_targets_dict = self._anchor.unpack_labels(center_targets)

    return (score_targets_dict, box_targets_dict,
            lrtb_targets_dict, center_targets_dict)