anchor.py 12.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Anchor box and labeler definition."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
Hongkun Yu's avatar
Hongkun Yu committed
22

23
import tensorflow as tf
Zhenyu Tan's avatar
Zhenyu Tan committed
24
from official.vision import keras_cv
25
26
27
28
29
30
31
32
33
34
from official.vision.detection.utils.object_detection import argmax_matcher
from official.vision.detection.utils.object_detection import balanced_positive_negative_sampler
from official.vision.detection.utils.object_detection import box_list
from official.vision.detection.utils.object_detection import faster_rcnn_box_coder
from official.vision.detection.utils.object_detection import target_assigner


class Anchor(object):
  """Anchor class for anchor-based object detectors."""

Hongkun Yu's avatar
Hongkun Yu committed
35
36
  def __init__(self, min_level, max_level, num_scales, aspect_ratios,
               anchor_size, image_size):
37
38
39
40
41
    """Constructs multiscale anchors.

    Args:
      min_level: integer number of minimum level of the output feature pyramid.
      max_level: integer number of maximum level of the output feature pyramid.
Hongkun Yu's avatar
Hongkun Yu committed
42
43
44
      num_scales: integer number representing intermediate scales added on each
        level. For instances, num_scales=2 adds one additional intermediate
        anchor scales [2^0, 2^0.5] on each level.
Srihari Humbarwadi's avatar
Srihari Humbarwadi committed
45
      aspect_ratios: list of float numbers representing the aspect ratio anchors
46
47
48
49
50
        added on each level. The number indicates the ratio of width to height.
        For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors on each
        scale level.
      anchor_size: float number representing the scale of size of the base
        anchor to the feature stride 2^level.
Hongkun Yu's avatar
Hongkun Yu committed
51
52
53
      image_size: a list of integer numbers or Tensors representing [height,
        width] of the input image size.The image_size should be divisible by the
        largest feature stride 2^max_level.
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    """
    self.min_level = min_level
    self.max_level = max_level
    self.num_scales = num_scales
    self.aspect_ratios = aspect_ratios
    self.anchor_size = anchor_size
    self.image_size = image_size
    self.boxes = self._generate_boxes()

  def _generate_boxes(self):
    """Generates multiscale anchor boxes.

    Returns:
      a Tensor of shape [N, 4], represneting anchor boxes of all levels
      concatenated together.
    """
    boxes_all = []
    for level in range(self.min_level, self.max_level + 1):
      boxes_l = []
      for scale in range(self.num_scales):
        for aspect_ratio in self.aspect_ratios:
Hongkun Yu's avatar
Hongkun Yu committed
75
76
          stride = 2**level
          intermediate_scale = 2**(scale / float(self.num_scales))
Srihari Humbarwadi's avatar
Srihari Humbarwadi committed
77
          base_anchor_size = self.anchor_size * stride * intermediate_scale
Hongkun Yu's avatar
Hongkun Yu committed
78
79
          aspect_x = aspect_ratio**0.5
          aspect_y = aspect_ratio**-0.5
80
81
82
83
84
85
86
87
          half_anchor_size_x = base_anchor_size * aspect_x / 2.0
          half_anchor_size_y = base_anchor_size * aspect_y / 2.0
          x = tf.range(stride / 2, self.image_size[1], stride)
          y = tf.range(stride / 2, self.image_size[0], stride)
          xv, yv = tf.meshgrid(x, y)
          xv = tf.cast(tf.reshape(xv, [-1]), dtype=tf.float32)
          yv = tf.cast(tf.reshape(yv, [-1]), dtype=tf.float32)
          # Tensor shape Nx4.
Hongkun Yu's avatar
Hongkun Yu committed
88
89
90
91
          boxes = tf.stack([
              yv - half_anchor_size_y, xv - half_anchor_size_x,
              yv + half_anchor_size_y, xv + half_anchor_size_x
          ],
92
93
94
95
96
97
98
99
100
101
102
103
104
                           axis=1)
          boxes_l.append(boxes)
      # Concat anchors on the same level to tensor shape NxAx4.
      boxes_l = tf.stack(boxes_l, axis=1)
      boxes_l = tf.reshape(boxes_l, [-1, 4])
      boxes_all.append(boxes_l)
    return tf.concat(boxes_all, axis=0)

  def unpack_labels(self, labels):
    """Unpacks an array of labels into multiscales labels."""
    unpacked_labels = collections.OrderedDict()
    count = 0
    for level in range(self.min_level, self.max_level + 1):
Hongkun Yu's avatar
Hongkun Yu committed
105
106
      feat_size_y = tf.cast(self.image_size[0] / 2**level, tf.int32)
      feat_size_x = tf.cast(self.image_size[1] / 2**level, tf.int32)
107
      steps = feat_size_y * feat_size_x * self.anchors_per_location
Hongkun Yu's avatar
Hongkun Yu committed
108
109
      unpacked_labels[level] = tf.reshape(labels[count:count + steps],
                                          [feat_size_y, feat_size_x, -1])
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
      count += steps
    return unpacked_labels

  @property
  def anchors_per_location(self):
    return self.num_scales * len(self.aspect_ratios)

  @property
  def multilevel_boxes(self):
    return self.unpack_labels(self.boxes)


class AnchorLabeler(object):
  """Labeler for dense object detector."""

Hongkun Yu's avatar
Hongkun Yu committed
125
  def __init__(self, anchor, match_threshold=0.5, unmatched_threshold=0.5):
126
127
128
129
130
131
132
133
134
135
136
    """Constructs anchor labeler to assign labels to anchors.

    Args:
      anchor: an instance of class Anchors.
      match_threshold: a float number between 0 and 1 representing the
        lower-bound threshold to assign positive labels for anchors. An anchor
        with a score over the threshold is labeled positive.
      unmatched_threshold: a float number between 0 and 1 representing the
        upper-bound threshold to assign negative labels for anchors. An anchor
        with a score below the threshold is labeled negative.
    """
Zhenyu Tan's avatar
Zhenyu Tan committed
137
    similarity_calc = keras_cv.ops.IouSimilarity()
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    matcher = argmax_matcher.ArgMaxMatcher(
        match_threshold,
        unmatched_threshold=unmatched_threshold,
        negatives_lower_than_unmatched=True,
        force_match_for_each_row=True)
    box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder()

    self._target_assigner = target_assigner.TargetAssigner(
        similarity_calc, matcher, box_coder)
    self._anchor = anchor
    self._match_threshold = match_threshold
    self._unmatched_threshold = unmatched_threshold

  def label_anchors(self, gt_boxes, gt_labels):
    """Labels anchors with ground truth inputs.

    Args:
      gt_boxes: A float tensor with shape [N, 4] representing groundtruth boxes.
        For each row, it stores [y0, x0, y1, x1] for four corners of a box.
      gt_labels: A integer tensor with shape [N, 1] representing groundtruth
        classes.
Hongkun Yu's avatar
Hongkun Yu committed
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    Returns:
      cls_targets_dict: ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors_per_location]. The height_l and
        width_l represent the dimension of class logits at l-th level.
      box_targets_dict: ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors_per_location * 4]. The height_l
        and width_l represent the dimension of bounding box regression output at
        l-th level.
      num_positives: scalar tensor storing number of positives in an image.
    """
    gt_box_list = box_list.BoxList(gt_boxes)
    anchor_box_list = box_list.BoxList(self._anchor.boxes)

    # The cls_weights, box_weights are not used.
    cls_targets, _, box_targets, _, matches = self._target_assigner.assign(
        anchor_box_list, gt_box_list, gt_labels)

    # Labels definition in matches.match_results:
    # (1) match_results[i]>=0, meaning that column i is matched with row
    #     match_results[i].
    # (2) match_results[i]=-1, meaning that column i is not matched.
    # (3) match_results[i]=-2, meaning that column i is ignored.
    match_results = tf.expand_dims(matches.match_results, axis=1)
    cls_targets = tf.cast(cls_targets, tf.int32)
    cls_targets = tf.where(
        tf.equal(match_results, -1), -tf.ones_like(cls_targets), cls_targets)
    cls_targets = tf.where(
        tf.equal(match_results, -2), -2 * tf.ones_like(cls_targets),
        cls_targets)

    # Unpacks labels into multi-level representations.
    cls_targets_dict = self._anchor.unpack_labels(cls_targets)
    box_targets_dict = self._anchor.unpack_labels(box_targets)
    num_positives = tf.reduce_sum(
        input_tensor=tf.cast(tf.greater(matches.match_results, -1), tf.float32))

    return cls_targets_dict, box_targets_dict, num_positives


class RpnAnchorLabeler(AnchorLabeler):
  """Labeler for Region Proposal Network."""

Hongkun Yu's avatar
Hongkun Yu committed
204
205
206
207
208
  def __init__(self,
               anchor,
               match_threshold=0.7,
               unmatched_threshold=0.3,
               rpn_batch_size_per_im=256,
209
               rpn_fg_fraction=0.5):
Hongkun Yu's avatar
Hongkun Yu committed
210
211
    AnchorLabeler.__init__(
        self, anchor, match_threshold=0.7, unmatched_threshold=0.3)
212
213
214
215
216
217
218
219
220
    self._rpn_batch_size_per_im = rpn_batch_size_per_im
    self._rpn_fg_fraction = rpn_fg_fraction

  def _get_rpn_samples(self, match_results):
    """Computes anchor labels.

    This function performs subsampling for foreground (fg) and background (bg)
    anchors.
    Args:
Hongkun Yu's avatar
Hongkun Yu committed
221
222
223
224
225
226
      match_results: A integer tensor with shape [N] representing the matching
        results of anchors. (1) match_results[i]>=0, meaning that column i is
        matched with row match_results[i]. (2) match_results[i]=-1, meaning that
        column i is not matched. (3) match_results[i]=-2, meaning that column i
        is ignored.

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    Returns:
      score_targets: a integer tensor with the a shape of [N].
        (1) score_targets[i]=1, the anchor is a positive sample.
        (2) score_targets[i]=0, negative. (3) score_targets[i]=-1, the anchor is
        don't care (ignore).
    """
    sampler = (
        balanced_positive_negative_sampler.BalancedPositiveNegativeSampler(
            positive_fraction=self._rpn_fg_fraction, is_static=False))
    # indicator includes both positive and negative labels.
    # labels includes only positives labels.
    # positives = indicator & labels.
    # negatives = indicator & !labels.
    # ignore = !indicator.
    indicator = tf.greater(match_results, -2)
    labels = tf.greater(match_results, -1)

Hongkun Yu's avatar
Hongkun Yu committed
244
    samples = sampler.subsample(indicator, self._rpn_batch_size_per_im, labels)
245
246
247
248
249
250
251
252
253
254
    positive_labels = tf.where(
        tf.logical_and(samples, labels),
        tf.constant(2, dtype=tf.int32, shape=match_results.shape),
        tf.constant(0, dtype=tf.int32, shape=match_results.shape))
    negative_labels = tf.where(
        tf.logical_and(samples, tf.logical_not(labels)),
        tf.constant(1, dtype=tf.int32, shape=match_results.shape),
        tf.constant(0, dtype=tf.int32, shape=match_results.shape))
    ignore_labels = tf.fill(match_results.shape, -1)

Hongkun Yu's avatar
Hongkun Yu committed
255
256
    return (ignore_labels + positive_labels + negative_labels, positive_labels,
            negative_labels)
257
258
259
260
261
262
263
264
265

  def label_anchors(self, gt_boxes, gt_labels):
    """Labels anchors with ground truth inputs.

    Args:
      gt_boxes: A float tensor with shape [N, 4] representing groundtruth boxes.
        For each row, it stores [y0, x0, y1, x1] for four corners of a box.
      gt_labels: A integer tensor with shape [N, 1] representing groundtruth
        classes.
Hongkun Yu's avatar
Hongkun Yu committed
266

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    Returns:
      score_targets_dict: ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors]. The height_l and width_l
        represent the dimension of class logits at l-th level.
      box_targets_dict: ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors * 4]. The height_l and
        width_l represent the dimension of bounding box regression output at
        l-th level.
    """
    gt_box_list = box_list.BoxList(gt_boxes)
    anchor_box_list = box_list.BoxList(self._anchor.boxes)

    # cls_targets, cls_weights, box_weights are not used.
    _, _, box_targets, _, matches = self._target_assigner.assign(
        anchor_box_list, gt_box_list, gt_labels)

    # score_targets contains the subsampled positive and negative anchors.
    score_targets, _, _ = self._get_rpn_samples(matches.match_results)

    # Unpacks labels.
    score_targets_dict = self._anchor.unpack_labels(score_targets)
    box_targets_dict = self._anchor.unpack_labels(box_targets)

    return score_targets_dict, box_targets_dict