model_training_utils.py 16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities to train BERT models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import json
22
23
24
25
26
import os

from absl import logging
import tensorflow as tf

27
28
_SUMMARY_TXT = 'training_summary.txt'
_MIN_SUMMARY_STEPS = 10
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

def get_primary_cpu_task(use_remote_tpu=False):
  """Returns primary CPU task to which input pipeline Ops are put."""

  # Remote Eager Borg job configures the TPU worker with job name 'worker'.
  return '/job:worker' if use_remote_tpu else ''


def _save_checkpoint(checkpoint, model_dir, checkpoint_prefix):
  """Saves model to with provided checkpoint prefix."""

  checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
  saved_path = checkpoint.save(checkpoint_path)
  logging.info('Saving model as TF checkpoint: %s', saved_path)
  return


47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def _get_input_iterator(input_fn, strategy):
  """Returns distributed dataset iterator."""

  # When training with TPU pods, datasets needs to be cloned across
  # workers. Since Dataset instance cannot be cloned in eager mode, we instead
  # pass callable that returns a dataset.
  input_data = input_fn()
  if callable(input_data):
    iterator = iter(
        strategy.experimental_distribute_datasets_from_function(input_data))
  else:
    iterator = iter(strategy.experimental_distribute_dataset(input_data))
  return iterator


62
63
64
65
66
67
68
def _float_metric_value(metric):
  """Gets the value of a float-value keras metric."""
  return metric.result().numpy().astype(float)


def _steps_to_run(current_step, steps_per_epoch, steps_per_loop):
  """Calculates steps to run on device."""
69
70
71
  if steps_per_loop <= 0:
    raise ValueError('steps_per_loop should be positive integer.')
  if steps_per_loop == 1:
72
73
74
75
76
77
78
79
    return steps_per_loop
  remainder_in_epoch = current_step % steps_per_epoch
  if remainder_in_epoch != 0:
    return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
  else:
    return steps_per_loop


80
81
82
83
84
85
86
87
def _write_txt_summary(training_summary, model_dir):
  """Writes a summary text file to record stats."""
  summary_path = os.path.join(model_dir, _SUMMARY_TXT)
  with tf.io.gfile.GFile(summary_path, 'wb') as f:
    logging.info('Training Summary: \n%s', str(training_summary))
    f.write(json.dumps(training_summary, indent=4))


88
89
90
91
92
93
94
95
96
97
def run_customized_training_loop(
    # pylint: disable=invalid-name
    _sentinel=None,
    # pylint: enable=invalid-name
    strategy=None,
    model_fn=None,
    loss_fn=None,
    model_dir=None,
    train_input_fn=None,
    steps_per_epoch=None,
98
    steps_per_loop=1,
99
100
101
102
103
    epochs=1,
    eval_input_fn=None,
    eval_steps=None,
    metric_fn=None,
    init_checkpoint=None,
104
    use_remote_tpu=False,
105
106
    custom_callbacks=None,
    run_eagerly=False):
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
  """Run BERT pretrain model training using low-level API.

  Arguments:
      _sentinel: Used to prevent positional parameters. Internal, do not use.
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: Function that returns a tuple (model, sub_model). Caller of this
        function should add optimizer to the `model` via calling
        `model.compile()` API or manually setting `model.optimizer` attribute.
        Second element of the returned tuple(sub_model) is an optional sub model
        to be used for initial checkpoint -- if provided.
      loss_fn: Function with signature func(labels, logits) and returns a loss
        tensor.
      model_dir: Model directory used during training for restoring/saving model
        weights.
      train_input_fn: Function that returns a tf.data.Dataset used for training.
122
123
124
125
126
127
      steps_per_epoch: Number of steps to run per epoch. At the end of each
        epoch, model checkpoint will be saved and evaluation will be conducted
        if evaluation dataset is provided.
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
128
129
130
131
132
133
134
135
136
137
138
139
      epochs: Number of epochs to train.
      eval_input_fn: Function that returns evaluation dataset. If none,
        evaluation is skipped.
      eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
        is not none.
      metric_fn: A metrics function that returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
      use_remote_tpu: If true, input pipeline ops are placed in TPU worker host
        as an optimization.
140
      custom_callbacks: A list of Keras Callbacks objects to run during
141
        training. More specifically, `on_batch_begin()`, `on_batch_end()`,
142
        methods are invoked during training.
143
144
      run_eagerly: Whether to run model training in pure eager execution. This
        should be disable for TPUStrategy.
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

  Returns:
      Trained model.

  Raises:
      ValueError: (1) When model returned by `model_fn` does not have optimizer
        attribute or when required parameters are set to none. (2) eval args are
        not specified correctly. (3) metric_fn must be a callable if specified.
  """

  if _sentinel is not None:
    raise ValueError('only call `run_customized_training_loop()` '
                     'with named arguments.')

  required_arguments = [
      strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
  ]
  if [arg for arg in required_arguments if arg is None]:
    raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
164
165
166
167
168
169
170
171
                     '`steps_per_loop` and `steps_per_epoch` are required '
                     'parameters.')
  if steps_per_loop > steps_per_epoch:
    logging.error(
        'steps_per_loop: %d is specified to be greater than '
        ' steps_per_epoch: %d, we will use steps_per_epoch as'
        ' steps_per_loop.', steps_per_loop, steps_per_epoch)
    steps_per_loop = steps_per_epoch
172
173
  assert tf.executing_eagerly()

174
175
176
177
178
179
180
181
182
183
  if run_eagerly:
    if steps_per_loop > 1:
      raise ValueError(
          'steps_per_loop is used for performance optimization. When you want '
          'to run eagerly, you cannot leverage graph mode loop.')
    if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
      raise ValueError(
          'TPUStrategy should not run eagerly as it heavily replies on graph'
          ' optimization for the distributed system.')

184
185
186
187
188
189
190
191
  if eval_input_fn and (eval_steps is None or metric_fn is None):
    raise ValueError(
        '`eval_step` and `metric_fn` are required when `eval_input_fn ` '
        'is not none.')
  if metric_fn and not callable(metric_fn):
    raise ValueError(
        'if `metric_fn` is specified, metric_fn must be a callable.')

192
193
  total_training_steps = steps_per_epoch * epochs

194
195
196
  # To reduce unnecessary send/receive input pipeline operation, we place input
  # pipeline ops in worker task.
  with tf.device(get_primary_cpu_task(use_remote_tpu)):
197
198
    train_iterator = _get_input_iterator(train_input_fn, strategy)

199
200
201
202
203
204
205
206
207
208
    with strategy.scope():
      # To correctly place the model weights on accelerators,
      # model and optimizer should be created in scope.
      model, sub_model = model_fn()
      if not hasattr(model, 'optimizer'):
        raise ValueError('User should set optimizer attribute to model '
                         'inside `model_fn`.')
      optimizer = model.optimizer

      if init_checkpoint:
209
210
211
212
213
214
        logging.info(
            'Checkpoint file %s found and restoring from '
            'initial checkpoint for core model.', init_checkpoint)
        checkpoint = tf.train.Checkpoint(model=sub_model)
        checkpoint.restore(init_checkpoint).assert_consumed()
        logging.info('Loading from checkpoint file completed')
215

216
217
218
      train_loss_metric = tf.keras.metrics.Mean(
          'training_loss', dtype=tf.float32)
      eval_metric = metric_fn() if metric_fn else None
219
220
221
      # If evaluation is required, make a copy of metric as it will be used by
      # both train and evaluation.
      train_metric = (
222
223
          eval_metric.__class__.from_config(eval_metric.get_config())
          if eval_metric else None)
224

225
226
227
228
229
230
231
232
233
234
235
      # Create summary writers
      eval_summary_writer = tf.summary.create_file_writer(
          os.path.join(model_dir, 'summaries/eval'))
      if steps_per_loop >= _MIN_SUMMARY_STEPS:
        # Only writes summary when the stats are collected sufficiently over
        # enough steps.
        train_summary_writer = tf.summary.create_file_writer(
            os.path.join(model_dir, 'summaries/train'))
      else:
        train_summary_writer = None

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
      def _replicated_step(inputs):
        """Replicated training step."""

        inputs, labels = inputs
        with tf.GradientTape() as tape:
          model_outputs = model(inputs)
          loss = loss_fn(labels, model_outputs)

        tvars = model.trainable_variables
        grads = tape.gradient(loss, tvars)
        optimizer.apply_gradients(zip(grads, tvars))
        # For reporting, the metric takes the mean of losses.
        train_loss_metric.update_state(loss)
        if train_metric:
          train_metric.update_state(labels, model_outputs)

252
      @tf.function
253
254
      def train_steps(iterator, steps):
        """Performs distributed training steps in a loop.
255
256
257
258
259
260
261
262
263
264
265

        Args:
          iterator: the distributed iterator of training datasets.
          steps: an tf.int32 integer tensor to specify number of steps to run
            inside host training loop.
        Raises:
          ValueError: Any of the arguments or tensor shapes are invalid.
        """
        if not isinstance(steps, tf.Tensor):
          raise ValueError('steps should be an Tensor. Python object may cause '
                           'retracing.')
266

267
268
        for _ in tf.range(steps):
          strategy.experimental_run_v2(_replicated_step, args=(next(iterator),))
269

270
271
272
273
274
275
276
277
278
279
      def train_single_step(iterator):
        """Performs a distributed training step.

        Args:
          iterator: the distributed iterator of training datasets.
        Raises:
          ValueError: Any of the arguments or tensor shapes are invalid.
        """
        strategy.experimental_run_v2(_replicated_step, args=(next(iterator),))

280
281
282
283
284
285
286
287
      def test_step(iterator):
        """Calculates evaluation metrics on distributed devices."""

        def _test_step_fn(inputs):
          """Replicated accuracy calculation."""

          inputs, labels = inputs
          model_outputs = model(inputs, training=False)
288
          eval_metric.update_state(labels, model_outputs)
289

290
        strategy.experimental_run_v2(_test_step_fn, args=(next(iterator),))
291

292
293
294
295
      if not run_eagerly:
        train_single_step = tf.function(train_single_step)
        test_step = tf.function(test_step)

296
      def _run_evaluation(current_training_step, test_iterator):
297
298
299
        """Runs validation steps and aggregate metrics."""
        for _ in range(eval_steps):
          test_step(test_iterator)
300
        eval_metric_value = _float_metric_value(eval_metric)
301
        logging.info('Step: [%d] Validation metric = %f', current_training_step,
302
303
304
305
306
                     eval_metric_value)
        with eval_summary_writer.as_default():
          tf.summary.scalar(
              eval_metric.name, eval_metric_value, step=current_training_step)
          eval_summary_writer.flush()
307

308
      def _run_callbacks_on_batch_begin(batch):
309
310
311
312
        """Runs custom callbacks at the start of every step."""
        if not custom_callbacks:
          return
        for callback in custom_callbacks:
313
          callback.on_batch_begin(batch)
314
315
316
317
318
319
320
321

      def _run_callbacks_on_batch_end(batch):
        """Runs custom callbacks at the end of every step."""
        if not custom_callbacks:
          return
        for callback in custom_callbacks:
          callback.on_batch_end(batch)

322
      # Training loop starts here.
323
      checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
324
325
326
327
328
      latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
      if latest_checkpoint_file:
        logging.info(
            'Checkpoint file %s found and restoring from '
            'checkpoint', latest_checkpoint_file)
329
        checkpoint.restore(latest_checkpoint_file)
330
331
332
333
334
335
        logging.info('Loading from checkpoint file completed')

      current_step = optimizer.iterations.numpy()
      checkpoint_name = 'ctl_step_{step}.ckpt'

      while current_step < total_training_steps:
336
337
338
        # Training loss/metric are taking average over steps inside micro
        # training loop. We reset the their values before each round.
        train_loss_metric.reset_states()
339
        if train_metric:
340
341
          train_metric.reset_states()

342
343
344
        _run_callbacks_on_batch_begin(current_step)
        # Runs several steps in the host while loop.
        steps = _steps_to_run(current_step, steps_per_epoch, steps_per_loop)
345
346
347
348
349
350
351
352
353

        if steps == 1:
          # TODO(zongweiz): merge with train_steps once tf.while_loop
          # GPU performance bugs are fixed.
          train_single_step(train_iterator)
        else:
          # Converts steps to a Tensor to avoid tf.function retracing.
          train_steps(train_iterator,
                      tf.convert_to_tensor(steps, dtype=tf.int32))
354
355
        _run_callbacks_on_batch_end(current_step)
        current_step += steps
356

357
        train_loss = _float_metric_value(train_loss_metric)
358
359
        # Updates training logging.
        training_status = 'Train Step: %d/%d  / loss = %s' % (
360
            current_step, total_training_steps, train_loss)
361
        if train_metric:
362
363
364
365
          train_metric_value = _float_metric_value(train_metric)
          training_status += ' training metric = %f' % train_metric_value
        else:
          train_metric_value = None
366
        logging.info(training_status)
367

368
369
370
371
372
373
374
375
376
        if train_summary_writer:
          with train_summary_writer.as_default():
            tf.summary.scalar(
                train_loss_metric.name, train_loss, step=current_step)
            if train_metric_value:
              tf.summary.scalar(
                  train_metric.name, train_metric_value, step=current_step)
            train_summary_writer.flush()

377
378
379
380
381
382
383
384
385
386
        # Saves model checkpoints and run validation steps at every epoch end.
        if current_step % steps_per_epoch == 0:
          # To avoid repeated model saving, we do not save after the last
          # step of training.
          if current_step < total_training_steps:
            _save_checkpoint(checkpoint, model_dir,
                             checkpoint_name.format(step=current_step))

          if eval_input_fn:
            logging.info('Running evaluation after step: %s.', current_step)
387
388
            _run_evaluation(current_step,
                            _get_input_iterator(eval_input_fn, strategy))
389
390
            # Re-initialize evaluation metric.
            eval_metric.reset_states()
391
392
393
394
395
396

      _save_checkpoint(checkpoint, model_dir,
                       checkpoint_name.format(step=current_step))

      if eval_input_fn:
        logging.info('Running final evaluation after training is complete.')
397
398
        _run_evaluation(current_step,
                        _get_input_iterator(eval_input_fn, strategy))
399
400
401

      training_summary = {
          'total_training_steps': total_training_steps,
402
          'train_loss': _float_metric_value(train_loss_metric),
403
      }
404
405
406
407
      if eval_metric:
        training_summary['last_train_metrics'] = _float_metric_value(
            train_metric)
        training_summary['eval_metrics'] = _float_metric_value(eval_metric)
408

409
      _write_txt_summary(training_summary, model_dir)
410
411

      return model