model_training_utils.py 11.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities to train BERT models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import json
22
23
24
25
26
import os

from absl import logging
import tensorflow as tf

27
28
SUMMARY_TXT = 'training_summary.txt'

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

def get_primary_cpu_task(use_remote_tpu=False):
  """Returns primary CPU task to which input pipeline Ops are put."""

  # Remote Eager Borg job configures the TPU worker with job name 'worker'.
  return '/job:worker' if use_remote_tpu else ''


def _save_checkpoint(checkpoint, model_dir, checkpoint_prefix):
  """Saves model to with provided checkpoint prefix."""

  checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
  saved_path = checkpoint.save(checkpoint_path)
  logging.info('Saving model as TF checkpoint: %s', saved_path)
  return


46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def _get_input_iterator(input_fn, strategy):
  """Returns distributed dataset iterator."""

  # When training with TPU pods, datasets needs to be cloned across
  # workers. Since Dataset instance cannot be cloned in eager mode, we instead
  # pass callable that returns a dataset.
  input_data = input_fn()
  if callable(input_data):
    iterator = iter(
        strategy.experimental_distribute_datasets_from_function(input_data))
  else:
    iterator = iter(strategy.experimental_distribute_dataset(input_data))
  return iterator


61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
def run_customized_training_loop(
    # pylint: disable=invalid-name
    _sentinel=None,
    # pylint: enable=invalid-name
    strategy=None,
    model_fn=None,
    loss_fn=None,
    model_dir=None,
    train_input_fn=None,
    steps_per_epoch=None,
    epochs=1,
    eval_input_fn=None,
    eval_steps=None,
    metric_fn=None,
    init_checkpoint=None,
76
77
    use_remote_tpu=False,
    custom_callbacks=None):
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
  """Run BERT pretrain model training using low-level API.

  Arguments:
      _sentinel: Used to prevent positional parameters. Internal, do not use.
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: Function that returns a tuple (model, sub_model). Caller of this
        function should add optimizer to the `model` via calling
        `model.compile()` API or manually setting `model.optimizer` attribute.
        Second element of the returned tuple(sub_model) is an optional sub model
        to be used for initial checkpoint -- if provided.
      loss_fn: Function with signature func(labels, logits) and returns a loss
        tensor.
      model_dir: Model directory used during training for restoring/saving model
        weights.
      train_input_fn: Function that returns a tf.data.Dataset used for training.
      steps_per_epoch: Number of steps to run per epoch.
      epochs: Number of epochs to train.
      eval_input_fn: Function that returns evaluation dataset. If none,
        evaluation is skipped.
      eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
        is not none.
      metric_fn: A metrics function that returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
      use_remote_tpu: If true, input pipeline ops are placed in TPU worker host
        as an optimization.
106
      custom_callbacks: A list of Keras Callbacks objects to run during
107
        training. More specifically, `on_batch_begin()`, `on_batch_end()`,
108
        methods are invoked during training.
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

  Returns:
      Trained model.

  Raises:
      ValueError: (1) When model returned by `model_fn` does not have optimizer
        attribute or when required parameters are set to none. (2) eval args are
        not specified correctly. (3) metric_fn must be a callable if specified.
  """

  if _sentinel is not None:
    raise ValueError('only call `run_customized_training_loop()` '
                     'with named arguments.')

  required_arguments = [
      strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
  ]
  if [arg for arg in required_arguments if arg is None]:
    raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
                     'and `steps_per_epoch` are required parameters')

  assert tf.executing_eagerly()

  if eval_input_fn and (eval_steps is None or metric_fn is None):
    raise ValueError(
        '`eval_step` and `metric_fn` are required when `eval_input_fn ` '
        'is not none.')
  if metric_fn and not callable(metric_fn):
    raise ValueError(
        'if `metric_fn` is specified, metric_fn must be a callable.')

  # To reduce unnecessary send/receive input pipeline operation, we place input
  # pipeline ops in worker task.
  with tf.device(get_primary_cpu_task(use_remote_tpu)):
143
144
    train_iterator = _get_input_iterator(train_input_fn, strategy)

145
146
147
148
149
150
151
152
153
154
155
156
    with strategy.scope():
      total_training_steps = steps_per_epoch * epochs

      # To correctly place the model weights on accelerators,
      # model and optimizer should be created in scope.
      model, sub_model = model_fn()
      if not hasattr(model, 'optimizer'):
        raise ValueError('User should set optimizer attribute to model '
                         'inside `model_fn`.')
      optimizer = model.optimizer

      if init_checkpoint:
157
158
159
160
161
162
        logging.info(
            'Checkpoint file %s found and restoring from '
            'initial checkpoint for core model.', init_checkpoint)
        checkpoint = tf.train.Checkpoint(model=sub_model)
        checkpoint.restore(init_checkpoint).assert_consumed()
        logging.info('Loading from checkpoint file completed')
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

      metric = metric_fn() if metric_fn else None
      # If evaluation is required, make a copy of metric as it will be used by
      # both train and evaluation.
      train_metric = (
          metric.__class__.from_config(metric.get_config())
          if metric else None)

      @tf.function
      def train_step(iterator):
        """Performs a distributed training step."""

        def _replicated_step(inputs):
          """Replicated training step."""

          inputs, labels = inputs
          with tf.GradientTape() as tape:
            model_outputs = model(inputs)
            loss = loss_fn(labels, model_outputs)
            if train_metric:
              train_metric.update_state(labels, model_outputs)

          tvars = model.trainable_variables
          grads = tape.gradient(loss, tvars)
          optimizer.apply_gradients(zip(grads, tvars))
          return loss

190
191
        per_replica_losses = strategy.experimental_run_v2(
            _replicated_step, args=(next(iterator),))
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        # For reporting, we returns the mean of losses.
        loss = strategy.reduce(
            tf.distribute.ReduceOp.MEAN, per_replica_losses, axis=None)
        return loss

      @tf.function
      def test_step(iterator):
        """Calculates evaluation metrics on distributed devices."""

        def _test_step_fn(inputs):
          """Replicated accuracy calculation."""

          inputs, labels = inputs
          model_outputs = model(inputs, training=False)
          metric.update_state(labels, model_outputs)

208
        strategy.experimental_run_v2(_test_step_fn, args=(next(iterator),))
209

210
      def _run_evaluation(current_training_step, test_iterator):
211
212
213
        """Runs validation steps and aggregate metrics."""
        for _ in range(eval_steps):
          test_step(test_iterator)
214
215

        metric_result = metric.result().numpy().astype(float)
216
        logging.info('Step: [%d] Validation metric = %f', current_training_step,
217
218
                     metric_result)
        return metric_result
219

220
      def _run_callbacks_on_batch_begin(batch):
221
222
223
224
        """Runs custom callbacks at the start of every step."""
        if not custom_callbacks:
          return
        for callback in custom_callbacks:
225
          callback.on_batch_begin(batch)
226
227
228
229
230
231
232
233

      def _run_callbacks_on_batch_end(batch):
        """Runs custom callbacks at the end of every step."""
        if not custom_callbacks:
          return
        for callback in custom_callbacks:
          callback.on_batch_end(batch)

234
      # Training loop starts here.
235
      checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
236
237
238
239
240
      latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
      if latest_checkpoint_file:
        logging.info(
            'Checkpoint file %s found and restoring from '
            'checkpoint', latest_checkpoint_file)
241
        checkpoint.restore(latest_checkpoint_file)
242
243
244
245
246
        logging.info('Loading from checkpoint file completed')

      current_step = optimizer.iterations.numpy()
      checkpoint_name = 'ctl_step_{step}.ckpt'

247
248
249
      train_metric_result = None
      eval_metric_result = None
      train_loss = None
250
251
      while current_step < total_training_steps:
        current_step += 1
252
        _run_callbacks_on_batch_begin(current_step)
253
254
        train_loss = train_step(train_iterator).numpy().astype(float)

255
        if train_metric:
256
257
258
259
260
          train_metric_result = train_metric.result().numpy().astype(float)

          logging.info('Train Step: %d/%d  / loss = %s / training metric = %s',
                       current_step, total_training_steps, train_loss,
                       train_metric_result)
261
262
        else:
          logging.info('Train Step: %d/%d  / loss = %s', current_step,
263
                       total_training_steps, train_loss)
264

265
266
        _run_callbacks_on_batch_end(current_step)

267
268
269
270
271
272
273
274
275
276
        # Saves model checkpoints and run validation steps at every epoch end.
        if current_step % steps_per_epoch == 0:
          # To avoid repeated model saving, we do not save after the last
          # step of training.
          if current_step < total_training_steps:
            _save_checkpoint(checkpoint, model_dir,
                             checkpoint_name.format(step=current_step))

          if eval_input_fn:
            logging.info('Running evaluation after step: %s.', current_step)
277
278
            _run_evaluation(current_step,
                            _get_input_iterator(eval_input_fn, strategy))
279
280
281
282
283
284
285
286
287
288
289

          # Re-initialize evaluation metric, except the last step.
          if metric and current_step < total_training_steps:
            metric.reset_states()
            train_metric.reset_states()

      _save_checkpoint(checkpoint, model_dir,
                       checkpoint_name.format(step=current_step))

      if eval_input_fn:
        logging.info('Running final evaluation after training is complete.')
290
        eval_metric_result = _run_evaluation(
291
            current_step, _get_input_iterator(eval_input_fn, strategy))
292
293
294
295
296
297
298
299
300
301

      training_summary = {
          'total_training_steps': total_training_steps,
          'train_loss': train_loss
      }
      if train_metric_result:
        training_summary['train_metrics'] = train_metric_result
      if eval_metric_result:
        training_summary['eval_metrics'] = eval_metric_result

davidmochen's avatar
davidmochen committed
302
303
304
      summary_path = os.path.join(model_dir, SUMMARY_TXT)
      with tf.io.gfile.GFile(summary_path, 'wb') as f:
        f.write(json.dumps(training_summary, indent=4))
305
306

      return model