model_zoo.md 14 KB
Newer Older
yukun's avatar
yukun committed
1
2
# TensorFlow DeepLab Model Zoo

3
4
5
6
We provide deeplab models pretrained several datasets, including (1) PASCAL VOC
2012, (2) Cityscapes, and (3) ADE20K for reproducing our results, as well as
some checkpoints that are only pretrained on ImageNet for training your own
models.
yukun's avatar
yukun committed
7
8
9
10
11
12
13

## DeepLab models trained on PASCAL VOC 2012

Un-tar'ed directory includes:

*   a frozen inference graph (`frozen_inference_graph.pb`). All frozen inference
    graphs use output stride of 8 and a single eval scale of 1.0. No left-right
14
15
    flips are used, and MobileNet-v2 based models do not include the decoder
    module.
yukun's avatar
yukun committed
16
17
18
19
20
21
22
23
24
25

*   a checkpoint (`model.ckpt.data-00000-of-00001`, `model.ckpt.index`)

### Model details

We provide several checkpoints that have been pretrained on VOC 2012 train_aug
set or train_aug + trainval set. In the former case, one could train their model
with smaller batch size and freeze batch normalization when limited GPU memory
is available, since we have already fine-tuned the batch normalization for you.
In the latter case, one could directly evaluate the checkpoints on VOC 2012 test
26
27
set or use this checkpoint for demo. Note *MobileNet-v2* based models do not
employ ASPP and decoder modules for fast computation.
yukun's avatar
yukun committed
28

yukun's avatar
yukun committed
29
30
Checkpoint name             | Network backbone | Pretrained  dataset | ASPP  | Decoder
--------------------------- | :--------------: | :-----------------: | :---: | :-----:
31
32
mobilenetv2_dm05_coco_voc_trainaug | MobileNet-v2 <br> Depth-Multiplier = 0.5  | MS-COCO <br> VOC 2012 train_aug set| N/A | N/A
mobilenetv2_dm05_coco_voc_trainval | MobileNet-v2 <br> Depth-Multiplier = 0.5  | MS-COCO <br> VOC 2012 train_aug + trainval sets | N/A | N/A
33
34
mobilenetv2_coco_voc_trainaug | MobileNet-v2  | MS-COCO <br> VOC 2012 train_aug set| N/A | N/A
mobilenetv2_coco_voc_trainval | MobileNet-v2  | MS-COCO <br> VOC 2012 train_aug + trainval sets | N/A | N/A
35
36
xception65_coco_voc_trainaug  | Xception_65  | MS-COCO <br> VOC 2012 train_aug set| [6,12,18] for OS=16 <br> [12,24,36] for OS=8 | OS = 4
xception65_coco_voc_trainval  | Xception_65  | MS-COCO <br> VOC 2012 train_aug + trainval sets | [6,12,18] for OS=16 <br> [12,24,36] for OS=8 | OS = 4
yukun's avatar
yukun committed
37
38
39
40
41

In the table, **OS** denotes output stride.

Checkpoint name                                                                                                          | Eval OS   | Eval scales                | Left-right Flip | Multiply-Adds        | Runtime (sec)  | PASCAL mIOU                    | File Size
------------------------------------------------------------------------------------------------------------------------ | :-------: | :------------------------: | :-------------: | :------------------: | :------------: | :----------------------------: | :-------:
42
43
[mobilenetv2_dm05_coco_voc_trainaug](http://download.tensorflow.org/models/deeplabv3_mnv2_dm05_pascal_trainaug_2018_10_01.tar.gz)  | 16 | [1.0] | No  | 0.88B  | -  | 70.19% (val)  | 7.6MB
[mobilenetv2_dm05_coco_voc_trainval](http://download.tensorflow.org/models/deeplabv3_mnv2_dm05_pascal_trainval_2018_10_01.tar.gz)  | 8  | [1.0] | No  | 2.84B  | -  | 71.83% (test)  | 7.6MB
44
45
[mobilenetv2_coco_voc_trainaug](http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz) | 16 <br> 8 | [1.0] <br> [0.5:0.25:1.75] | No <br> Yes     | 2.75B <br> 152.59B   | 0.1 <br> 26.9  | 75.32% (val) <br> 77.33 (val)  | 23MB
[mobilenetv2_coco_voc_trainval](http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_trainval_2018_01_29.tar.gz)  | 8         | [0.5:0.25:1.75]            | Yes             | 152.59B              | 26.9           | 80.25% (**test**)              | 23MB
46
47
[xception65_coco_voc_trainaug](http://download.tensorflow.org/models/deeplabv3_pascal_train_aug_2018_01_04.tar.gz)         | 16 <br> 8 | [1.0] <br> [0.5:0.25:1.75] | No <br> Yes     | 54.17B <br> 3055.35B | 0.7 <br> 223.2 | 82.20% (val) <br> 83.58% (val) | 439MB
[xception65_coco_voc_trainval](http://download.tensorflow.org/models/deeplabv3_pascal_trainval_2018_01_04.tar.gz)          | 8         | [0.5:0.25:1.75]            | Yes             | 3055.35B             | 223.2          | 87.80% (**test**)              | 439MB
yukun's avatar
yukun committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61

In the table, we report both computation complexity (in terms of Multiply-Adds
and CPU Runtime) and segmentation performance (in terms of mIOU) on the PASCAL
VOC val or test set. The reported runtime is calculated by tfprof on a
workstation with CPU E5-1650 v3 @ 3.50GHz and 32GB memory. Note that applying
multi-scale inputs and left-right flips increases the segmentation performance
but also significantly increases the computation and thus may not be suitable
for real-time applications.

## DeepLab models trained on Cityscapes

### Model details

We provide several checkpoints that have been pretrained on Cityscapes
62
63
train_fine set. Note *MobileNet-v2* based model has been pretrained on MS-COCO
dataset and does not employ ASPP and decoder modules for fast computation.
yukun's avatar
yukun committed
64
65
66

Checkpoint name                       | Network backbone | Pretrained dataset                      | ASPP                                             | Decoder
------------------------------------- | :--------------: | :-------------------------------------: | :----------------------------------------------: | :-----:
67
mobilenetv2_coco_cityscapes_trainfine | MobileNet-v2     | MS-COCO <br> Cityscapes train_fine set  | N/A                                              | N/A
68
69
70
xception65_cityscapes_trainfine         | Xception_65      | ImageNet <br> Cityscapes train_fine set | [6, 12, 18] for OS=16 <br> [12, 24, 36] for OS=8 | OS = 4
xception71_dpc_cityscapes_trainfine         | Xception_71      | ImageNet <br> MS-COCO <br> Cityscapes train_fine set | Dense Prediction Cell | OS = 4
xception71_dpc_cityscapes_trainval         | Xception_71      | ImageNet <br> MS-COCO <br> Cityscapes trainval_fine and coarse set | Dense Prediction Cell | OS = 4
yukun's avatar
yukun committed
71
72
73
74
75

In the table, **OS** denotes output stride.

Checkpoint name                                                                                                                  | Eval OS   | Eval scales                 | Left-right Flip | Multiply-Adds         | Runtime (sec)  | Cityscapes mIOU                | File Size
-------------------------------------------------------------------------------------------------------------------------------- | :-------: | :-------------------------: | :-------------: | :-------------------: | :------------: | :----------------------------: | :-------:
76
[mobilenetv2_coco_cityscapes_trainfine](http://download.tensorflow.org/models/deeplabv3_mnv2_cityscapes_train_2018_02_05.tar.gz) | 16 <br> 8 | [1.0] <br> [0.75:0.25:1.25] | No <br> Yes     | 21.27B <br> 433.24B   | 0.8 <br> 51.12 | 70.71% (val) <br> 73.57% (val) | 23MB
77
78
79
80
81
[xception65_cityscapes_trainfine](http://download.tensorflow.org/models/deeplabv3_cityscapes_train_2018_02_06.tar.gz)              | 16 <br> 8 | [1.0] <br> [0.75:0.25:1.25] | No <br> Yes     | 418.64B <br> 8677.92B | 5.0 <br> 422.8 | 78.79% (val) <br> 80.42% (val) | 439MB
[xception71_dpc_cityscapes_trainfine](http://download.tensorflow.org/models/deeplab_cityscapes_xception71_trainfine_2018_09_08.tar.gz) | 16 | [1.0] | No  | 502.07B | - | 80.31% (val) | 445MB
[xception71_dpc_cityscapes_trainval](http://download.tensorflow.org/models/deeplab_cityscapes_xception71_trainvalfine_2018_09_08.tar.gz) | 8 | [0.75:0.25:2] | Yes  | - | - | 82.66% (**test**) | 446MB


yukun's avatar
yukun committed
82

83
84
85
86
87
88
89
90
## DeepLab models trained on ADE20K

### Model details

We provide some checkpoints that have been pretrained on ADE20K training set.
Note that the model has only been pretrained on ImageNet, following the
dataset rule.

91
92
93
94
95
96
Checkpoint name                       | Network backbone | Pretrained dataset                      | ASPP                                             | Decoder | Input size
------------------------------------- | :--------------: | :-------------------------------------: | :----------------------------------------------: | :-----: | :-----:
mobilenetv2_ade20k_train              | MobileNet-v2     | ImageNet <br> ADE20K training set       | N/A                                              | OS = 4  | 257x257
xception65_ade20k_train               | Xception_65      | ImageNet <br> ADE20K training set       | [6, 12, 18] for OS=16 <br> [12, 24, 36] for OS=8 | OS = 4  | 513x513

The input dimensions of ADE20K have a huge amount of variation. We resize inputs so that the longest size is 257 for MobileNet-v2 (faster inference) and 513 for Xception_65 (better performation). Note that we also include the decoder module in the MobileNet-v2 checkpoint.
97

Yukun Zhu's avatar
Yukun Zhu committed
98
99
Checkpoint name                       | Eval OS   | Eval scales                 | Left-right Flip |  mIOU                 | Pixel-wise Accuracy | File Size
------------------------------------- | :-------: | :-------------------------: | :-------------: | :-------------------: | :-------------------: | :-------:
100
101
102
[mobilenetv2_ade20k_train](http://download.tensorflow.org/models/deeplabv3_mnv2_ade20k_train_2018_12_03.tar.gz)           | 16 | [1.0] | No     | 32.04% (val) | 75.41% (val) | 24.8MB
[xception65_ade20k_train](http://download.tensorflow.org/models/deeplabv3_xception_ade20k_train_2018_05_29.tar.gz)        | 8 | [0.5:0.25:1.75] | Yes     | 45.65% (val) | 82.52% (val) | 439MB

103

yukun's avatar
yukun committed
104
105
106
107
108
109
110
111
## Checkpoints pretrained on ImageNet

Un-tar'ed directory includes:

*   model checkpoint (`model.ckpt.data-00000-of-00001`, `model.ckpt.index`).

### Model details

112
113
114
We also provide some checkpoints that are pretrained on ImageNet and/or COCO (as
post-fixed in the model name) so that one could use this for training your own
models.
yukun's avatar
yukun committed
115

116
117
118
119
*   mobilenet_v2: We refer the interested users to the TensorFlow open source
    [MobileNet-V2](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet)
    for details.

120
121
122
123
124
125
126
127
128
129
*   xception_{41,65,71}: We adapt the original Xception model to the task of
    semantic segmentation with the following changes: (1) more layers, (2) all
    max pooling operations are replaced by strided (atrous) separable
    convolutions, and (3) extra batch-norm and ReLU after each 3x3 depthwise
    convolution are added. We provide three Xception model variants with
    different network depths.

*   resnet_v1_{50,101}_beta: We modify the original ResNet-101 [10], similar to
    PSPNet [11] by replacing the first 7x7 convolution with three 3x3
    convolutions. See resnet_v1_beta.py for more details.
yukun's avatar
yukun committed
130
131
132

Model name                                                                             | File Size
-------------------------------------------------------------------------------------- | :-------:
133
134
135
136
137
138
[xception_41_imagenet](http://download.tensorflow.org/models/xception_41_2018_05_09.tar.gz ) | 288MB
[xception_65_imagenet](http://download.tensorflow.org/models/deeplabv3_xception_2018_01_04.tar.gz) | 447MB
[xception_65_imagenet_coco](http://download.tensorflow.org/models/xception_65_coco_pretrained_2018_10_02.tar.gz) | 292MB
[xception_71_imagenet](http://download.tensorflow.org/models/xception_71_2018_05_09.tar.gz  ) | 474MB
[resnet_v1_50_beta_imagenet](http://download.tensorflow.org/models/resnet_v1_50_2018_05_04.tar.gz)      | 274MB
[resnet_v1_101_beta_imagenet](http://download.tensorflow.org/models/resnet_v1_101_2018_05_04.tar.gz)    | 477MB
yukun's avatar
yukun committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

## References

1.  **Mobilenets: Efficient convolutional neural networks for mobile vision applications**<br />
    Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam<br />
    [[link]](https://arxiv.org/abs/1704.04861). arXiv:1704.04861, 2017.

2.  **Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation**<br />
    Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen<br />
    [[link]](https://arxiv.org/abs/1801.04381). arXiv:1801.04381, 2018.

3.  **Xception: Deep Learning with Depthwise Separable Convolutions**<br />
    François Chollet<br />
    [[link]](https://arxiv.org/abs/1610.02357). In the Proc. of CVPR, 2017.

4.  **Deformable Convolutional Networks -- COCO Detection and Segmentation Challenge 2017 Entry**<br />
    Haozhi Qi, Zheng Zhang, Bin Xiao, Han Hu, Bowen Cheng, Yichen Wei, Jifeng Dai<br />
    [[link]](http://presentations.cocodataset.org/COCO17-Detect-MSRA.pdf). ICCV COCO Challenge
    Workshop, 2017.

5.  **The Pascal Visual Object Classes Challenge: A Retrospective**<br />
    Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John M. Winn, Andrew Zisserman<br />
    [[link]](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/). IJCV, 2014.

6.  **Semantic Contours from Inverse Detectors**<br />
    Bharath Hariharan, Pablo Arbelaez, Lubomir Bourdev, Subhransu Maji, Jitendra Malik<br />
    [[link]](http://home.bharathh.info/pubs/codes/SBD/download.html). In the Proc. of ICCV, 2011.

7.  **The Cityscapes Dataset for Semantic Urban Scene Understanding**<br />
    Cordts, Marius, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, Bernt Schiele. <br />
    [[link]](https://www.cityscapes-dataset.com/). In the Proc. of CVPR, 2016.

8.  **Microsoft COCO: Common Objects in Context**<br />
    Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, Piotr Dollar<br />
    [[link]](http://cocodataset.org/). In the Proc. of ECCV, 2014.

9.  **ImageNet Large Scale Visual Recognition Challenge**<br />
    Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, Li Fei-Fei<br />
    [[link]](http://www.image-net.org/). IJCV, 2015.
178
179
180
181
182
183
184
185
186
187
188
189

10. **Deep Residual Learning for Image Recognition**<br />
    Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun<br />
    [[link]](https://arxiv.org/abs/1512.03385). CVPR, 2016.

11. **Pyramid Scene Parsing Network**<br />
    Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia<br />
    [[link]](https://arxiv.org/abs/1612.01105). In CVPR, 2017.

12. **Scene Parsing through ADE20K Dataset**<br />
    Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, Antonio Torralba<br />
    [[link]](http://groups.csail.mit.edu/vision/datasets/ADE20K/). In CVPR,
190
    2017.