logger_test.py 14.3 KB
Newer Older
Scott Zhu's avatar
Scott Zhu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Tests for benchmark logger."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import tempfile
25
import time
26
import unittest
Scott Zhu's avatar
Scott Zhu committed
27

28
29
import mock
from absl.testing import flagsaver
Karmel Allison's avatar
Karmel Allison committed
30
import tensorflow as tf  # pylint: disable=g-bad-import-order
Scott Zhu's avatar
Scott Zhu committed
31

32
33
34
35
36
try:
  from google.cloud import bigquery
except ImportError:
  bigquery = None

37
from official.utils.misc import keras_utils
38
from official.utils.flags import core as flags_core
39
from official.utils.logs import logger
Scott Zhu's avatar
Scott Zhu committed
40
41
42
43


class BenchmarkLoggerTest(tf.test.TestCase):

44
45
46
47
48
  @classmethod
  def setUpClass(cls):  # pylint: disable=invalid-name
    super(BenchmarkLoggerTest, cls).setUpClass()
    flags_core.define_benchmark()

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
49
  def test_get_default_benchmark_logger(self):
50
    with flagsaver.flagsaver(benchmark_logger_type="foo"):
51
52
      self.assertIsInstance(logger.get_benchmark_logger(),
                            logger.BaseBenchmarkLogger)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
53
54

  def test_config_base_benchmark_logger(self):
55
    with flagsaver.flagsaver(benchmark_logger_type="BaseBenchmarkLogger"):
56
57
58
      logger.config_benchmark_logger()
      self.assertIsInstance(logger.get_benchmark_logger(),
                            logger.BaseBenchmarkLogger)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
59
60

  def test_config_benchmark_file_logger(self):
61
62
    # Set the benchmark_log_dir first since the benchmark_logger_type will need
    # the value to be set when it does the validation.
63
64
    with flagsaver.flagsaver(benchmark_log_dir="/tmp"):
      with flagsaver.flagsaver(benchmark_logger_type="BenchmarkFileLogger"):
65
66
67
68
        logger.config_benchmark_logger()
        self.assertIsInstance(logger.get_benchmark_logger(),
                              logger.BenchmarkFileLogger)

69
  @unittest.skipIf(bigquery is None, "Bigquery dependency is not installed.")
70
71
  @mock.patch.object(bigquery, "Client")
  def test_config_benchmark_bigquery_logger(self, mock_bigquery_client):
72
    with flagsaver.flagsaver(benchmark_logger_type="BenchmarkBigQueryLogger"):
73
74
75
      logger.config_benchmark_logger()
      self.assertIsInstance(logger.get_benchmark_logger(),
                            logger.BenchmarkBigQueryLogger)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
76

77
78
79
80
81
  @mock.patch("official.utils.logs.logger.config_benchmark_logger")
  def test_benchmark_context(self, mock_config_benchmark_logger):
    mock_logger = mock.MagicMock()
    mock_config_benchmark_logger.return_value = mock_logger
    with logger.benchmark_context(None):
82
      tf.compat.v1.logging.info("start benchmarking")
83
84
85
86
87
88
89
90
91
92
93
    mock_logger.on_finish.assert_called_once_with(logger.RUN_STATUS_SUCCESS)

  @mock.patch("official.utils.logs.logger.config_benchmark_logger")
  def test_benchmark_context_failure(self, mock_config_benchmark_logger):
    mock_logger = mock.MagicMock()
    mock_config_benchmark_logger.return_value = mock_logger
    with self.assertRaises(RuntimeError):
      with logger.benchmark_context(None):
        raise RuntimeError("training error")
    mock_logger.on_finish.assert_called_once_with(logger.RUN_STATUS_FAILURE)

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
94
95
96
97
98

class BaseBenchmarkLoggerTest(tf.test.TestCase):

  def setUp(self):
    super(BaseBenchmarkLoggerTest, self).setUp()
99
    self._actual_log = tf.compat.v1.logging.info
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
100
101
102
103
104
105
    self.logged_message = None

    def mock_log(*args, **kwargs):
      self.logged_message = args
      self._actual_log(*args, **kwargs)

106
    tf.compat.v1.logging.info = mock_log
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
107
108
109

  def tearDown(self):
    super(BaseBenchmarkLoggerTest, self).tearDown()
110
    tf.compat.v1.logging.info = self._actual_log
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
111
112
113
114
115
116
117
118
119
120
121

  def test_log_metric(self):
    log = logger.BaseBenchmarkLogger()
    log.log_metric("accuracy", 0.999, global_step=1e4, extras={"name": "value"})

    expected_log_prefix = "Benchmark metric:"
    self.assertRegexpMatches(str(self.logged_message), expected_log_prefix)


class BenchmarkFileLoggerTest(tf.test.TestCase):

122
  def setUp(self):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
123
    super(BenchmarkFileLoggerTest, self).setUp()
124
125
126
127
128
129
    # Avoid pulling extra env vars from test environment which affects the test
    # result, eg. Kokoro test has a TF_PKG env which affect the test case
    # test_collect_tensorflow_environment_variables()
    self.original_environ = dict(os.environ)
    os.environ.clear()

Scott Zhu's avatar
Scott Zhu committed
130
  def tearDown(self):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
131
    super(BenchmarkFileLoggerTest, self).tearDown()
132
    tf.io.gfile.rmtree(self.get_temp_dir())
133
134
    os.environ.clear()
    os.environ.update(self.original_environ)
Scott Zhu's avatar
Scott Zhu committed
135
136
137

  def test_create_logging_dir(self):
    non_exist_temp_dir = os.path.join(self.get_temp_dir(), "unknown_dir")
138
    self.assertFalse(tf.io.gfile.isdir(non_exist_temp_dir))
Scott Zhu's avatar
Scott Zhu committed
139

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
140
    logger.BenchmarkFileLogger(non_exist_temp_dir)
141
    self.assertTrue(tf.io.gfile.isdir(non_exist_temp_dir))
Scott Zhu's avatar
Scott Zhu committed
142
143
144

  def test_log_metric(self):
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
145
    log = logger.BenchmarkFileLogger(log_dir)
Scott Zhu's avatar
Scott Zhu committed
146
147
148
    log.log_metric("accuracy", 0.999, global_step=1e4, extras={"name": "value"})

    metric_log = os.path.join(log_dir, "metric.log")
149
150
    self.assertTrue(tf.io.gfile.exists(metric_log))
    with tf.io.gfile.GFile(metric_log) as f:
Scott Zhu's avatar
Scott Zhu committed
151
152
153
154
155
      metric = json.loads(f.readline())
      self.assertEqual(metric["name"], "accuracy")
      self.assertEqual(metric["value"], 0.999)
      self.assertEqual(metric["unit"], None)
      self.assertEqual(metric["global_step"], 1e4)
156
      self.assertEqual(metric["extras"], [{"name": "name", "value": "value"}])
Scott Zhu's avatar
Scott Zhu committed
157
158
159

  def test_log_multiple_metrics(self):
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
160
    log = logger.BenchmarkFileLogger(log_dir)
Scott Zhu's avatar
Scott Zhu committed
161
162
163
164
    log.log_metric("accuracy", 0.999, global_step=1e4, extras={"name": "value"})
    log.log_metric("loss", 0.02, global_step=1e4)

    metric_log = os.path.join(log_dir, "metric.log")
165
166
    self.assertTrue(tf.io.gfile.exists(metric_log))
    with tf.io.gfile.GFile(metric_log) as f:
Scott Zhu's avatar
Scott Zhu committed
167
168
169
170
171
      accuracy = json.loads(f.readline())
      self.assertEqual(accuracy["name"], "accuracy")
      self.assertEqual(accuracy["value"], 0.999)
      self.assertEqual(accuracy["unit"], None)
      self.assertEqual(accuracy["global_step"], 1e4)
172
      self.assertEqual(accuracy["extras"], [{"name": "name", "value": "value"}])
Scott Zhu's avatar
Scott Zhu committed
173
174
175
176
177
178

      loss = json.loads(f.readline())
      self.assertEqual(loss["name"], "loss")
      self.assertEqual(loss["value"], 0.02)
      self.assertEqual(loss["unit"], None)
      self.assertEqual(loss["global_step"], 1e4)
179
      self.assertEqual(loss["extras"], [])
Scott Zhu's avatar
Scott Zhu committed
180

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
181
  def test_log_non_number_value(self):
Scott Zhu's avatar
Scott Zhu committed
182
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
183
    log = logger.BenchmarkFileLogger(log_dir)
Scott Zhu's avatar
Scott Zhu committed
184
185
186
187
    const = tf.constant(1)
    log.log_metric("accuracy", const)

    metric_log = os.path.join(log_dir, "metric.log")
188
    self.assertFalse(tf.io.gfile.exists(metric_log))
Scott Zhu's avatar
Scott Zhu committed
189

190
  def test_log_evaluation_result(self):
191
192
193
    eval_result = {"loss": 0.46237424,
                   "global_step": 207082,
                   "accuracy": 0.9285}
194
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
195
196
    log = logger.BenchmarkFileLogger(log_dir)
    log.log_evaluation_result(eval_result)
197
198

    metric_log = os.path.join(log_dir, "metric.log")
199
200
    self.assertTrue(tf.io.gfile.exists(metric_log))
    with tf.io.gfile.GFile(metric_log) as f:
201
202
203
204
205
206
      accuracy = json.loads(f.readline())
      self.assertEqual(accuracy["name"], "accuracy")
      self.assertEqual(accuracy["value"], 0.9285)
      self.assertEqual(accuracy["unit"], None)
      self.assertEqual(accuracy["global_step"], 207082)

207
208
209
210
211
212
      loss = json.loads(f.readline())
      self.assertEqual(loss["name"], "loss")
      self.assertEqual(loss["value"], 0.46237424)
      self.assertEqual(loss["unit"], None)
      self.assertEqual(loss["global_step"], 207082)

213
214
215
  def test_log_evaluation_result_with_invalid_type(self):
    eval_result = "{'loss': 0.46237424, 'global_step': 207082}"
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
216
217
    log = logger.BenchmarkFileLogger(log_dir)
    log.log_evaluation_result(eval_result)
218
219

    metric_log = os.path.join(log_dir, "metric.log")
220
    self.assertFalse(tf.io.gfile.exists(metric_log))
221

222
223
224
225
226
227
228
229
230
231
232
  @mock.patch("official.utils.logs.logger._gather_run_info")
  def test_log_run_info(self, mock_gather_run_info):
    log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
    log = logger.BenchmarkFileLogger(log_dir)
    run_info = {"model_name": "model_name",
                "dataset": "dataset_name",
                "run_info": "run_value"}
    mock_gather_run_info.return_value = run_info
    log.log_run_info("model_name", "dataset_name", {})

    run_log = os.path.join(log_dir, "benchmark_run.log")
233
234
    self.assertTrue(tf.io.gfile.exists(run_log))
    with tf.io.gfile.GFile(run_log) as f:
235
236
237
238
239
      run_info = json.loads(f.readline())
      self.assertEqual(run_info["model_name"], "model_name")
      self.assertEqual(run_info["dataset"], "dataset_name")
      self.assertEqual(run_info["run_info"], "run_value")

240
241
242
243
  def test_collect_tensorflow_info(self):
    run_info = {}
    logger._collect_tensorflow_info(run_info)
    self.assertNotEqual(run_info["tensorflow_version"], {})
244
245
246
247
    self.assertEqual(run_info["tensorflow_version"]["version"],
                     tf.version.VERSION)
    self.assertEqual(run_info["tensorflow_version"]["git_hash"],
                     tf.version.GIT_VERSION)
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
  def test_collect_run_params(self):
    run_info = {}
    run_parameters = {
        "batch_size": 32,
        "synthetic_data": True,
        "train_epochs": 100.00,
        "dtype": "fp16",
        "resnet_size": 50,
        "random_tensor": tf.constant(2.0)
    }
    logger._collect_run_params(run_info, run_parameters)
    self.assertEqual(len(run_info["run_parameters"]), 6)
    self.assertEqual(run_info["run_parameters"][0],
                     {"name": "batch_size", "long_value": 32})
    self.assertEqual(run_info["run_parameters"][1],
                     {"name": "dtype", "string_value": "fp16"})
265
266
267
268
269
270
    v1_tensor = {"name": "random_tensor", "string_value":
                     "Tensor(\"Const:0\", shape=(), dtype=float32)"}
    v2_tensor = {"name": "random_tensor", "string_value":
                     "tf.Tensor(2.0, shape=(), dtype=float32)"}
    self.assertIn(run_info["run_parameters"][2], [v1_tensor, v2_tensor])

271

272
273
274
275
276
277
278
    self.assertEqual(run_info["run_parameters"][3],
                     {"name": "resnet_size", "long_value": 50})
    self.assertEqual(run_info["run_parameters"][4],
                     {"name": "synthetic_data", "bool_value": "True"})
    self.assertEqual(run_info["run_parameters"][5],
                     {"name": "train_epochs", "float_value": 100.00})

279
280
  def test_collect_tensorflow_environment_variables(self):
    os.environ["TF_ENABLE_WINOGRAD_NONFUSED"] = "1"
281
282
    os.environ["TF_OTHER"] = "2"
    os.environ["OTHER"] = "3"
283
284
285
286

    run_info = {}
    logger._collect_tensorflow_environment_variables(run_info)
    self.assertIsNotNone(run_info["tensorflow_environment_variables"])
287
288
289
290
291
292
    expected_tf_envs = [
        {"name": "TF_ENABLE_WINOGRAD_NONFUSED", "value": "1"},
        {"name": "TF_OTHER", "value": "2"},
    ]
    self.assertEqual(run_info["tensorflow_environment_variables"],
                     expected_tf_envs)
293
294

  def test_collect_memory_info(self):
295
    run_info = {"machine_config": {}}
296
    logger._collect_memory_info(run_info)
297
298
    self.assertIsNotNone(run_info["machine_config"]["memory_total"])
    self.assertIsNotNone(run_info["machine_config"]["memory_available"])
299

300

301
@unittest.skipIf(bigquery is None, "Bigquery dependency is not installed.")
302
303
304
305
306
307
308
309
310
311
312
313
class BenchmarkBigQueryLoggerTest(tf.test.TestCase):

  def setUp(self):
    super(BenchmarkBigQueryLoggerTest, self).setUp()
    # Avoid pulling extra env vars from test environment which affects the test
    # result, eg. Kokoro test has a TF_PKG env which affect the test case
    # test_collect_tensorflow_environment_variables()
    self.original_environ = dict(os.environ)
    os.environ.clear()

    self.mock_bq_uploader = mock.MagicMock()
    self.logger = logger.BenchmarkBigQueryLogger(
314
315
        self.mock_bq_uploader, "dataset", "run_table", "run_status_table",
        "metric_table", "run_id")
316
317
318

  def tearDown(self):
    super(BenchmarkBigQueryLoggerTest, self).tearDown()
319
    tf.io.gfile.rmtree(self.get_temp_dir())
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    os.environ.clear()
    os.environ.update(self.original_environ)

  def test_log_metric(self):
    self.logger.log_metric(
        "accuracy", 0.999, global_step=1e4, extras={"name": "value"})
    expected_metric_json = [{
        "name": "accuracy",
        "value": 0.999,
        "unit": None,
        "global_step": 1e4,
        "timestamp": mock.ANY,
        "extras": [{"name": "name", "value": "value"}]
    }]
    # log_metric will call upload_benchmark_metric_json in a separate thread.
    # Give it some grace period for the new thread before assert.
    time.sleep(1)
    self.mock_bq_uploader.upload_benchmark_metric_json.assert_called_once_with(
        "dataset", "metric_table", "run_id", expected_metric_json)

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
  @mock.patch("official.utils.logs.logger._gather_run_info")
  def test_log_run_info(self, mock_gather_run_info):
    run_info = {"model_name": "model_name",
                "dataset": "dataset_name",
                "run_info": "run_value"}
    mock_gather_run_info.return_value = run_info
    self.logger.log_run_info("model_name", "dataset_name", {})
    # log_metric will call upload_benchmark_metric_json in a separate thread.
    # Give it some grace period for the new thread before assert.
    time.sleep(1)
    self.mock_bq_uploader.upload_benchmark_run_json.assert_called_once_with(
        "dataset", "run_table", "run_id", run_info)
    self.mock_bq_uploader.insert_run_status.assert_called_once_with(
        "dataset", "run_status_table", "run_id", "running")

  def test_on_finish(self):
    self.logger.on_finish(logger.RUN_STATUS_SUCCESS)
    # log_metric will call upload_benchmark_metric_json in a separate thread.
    # Give it some grace period for the new thread before assert.
    time.sleep(1)
    self.mock_bq_uploader.update_run_status.assert_called_once_with(
        "dataset", "run_status_table", "run_id", logger.RUN_STATUS_SUCCESS)

363

Scott Zhu's avatar
Scott Zhu committed
364
365
if __name__ == "__main__":
  tf.test.main()