transformer.py 23.4 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based transformer block layer."""
16
# pylint: disable=g-classes-have-attributes
Hongkun Yu's avatar
Hongkun Yu committed
17
18
19
20
21
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

Chen Chen's avatar
Chen Chen committed
22
import gin
Hongkun Yu's avatar
Hongkun Yu committed
23
24
25
import tensorflow as tf

from official.nlp.modeling.layers import attention
26
from official.nlp.modeling.layers import multi_channel_attention
27
from official.nlp.modeling.layers.util import tf_function_if_eager
Hongkun Yu's avatar
Hongkun Yu committed
28
29
30
31
32
33
34
35
36


@tf.keras.utils.register_keras_serializable(package="Text")
class Transformer(tf.keras.layers.Layer):
  """Transformer layer.

  This layer implements the Transformer from "Attention Is All You Need".
  (https://arxiv.org/abs/1706.03762).

37
  Arguments:
Hongkun Yu's avatar
Hongkun Yu committed
38
39
40
41
42
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
43
44
    output_range: the sequence output range, [0, output_range) by slicing the
      target sequence. `None` means the target sequence is not sliced.
Hongkun Yu's avatar
Hongkun Yu committed
45
46
47
48
49
50
51
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
xinliupitt's avatar
xinliupitt committed
52
53
    use_bias: Whether to enable use_bias in attention layer. If set False,
      use_bias in attention layer is disabled.
xinliupitt's avatar
xinliupitt committed
54
    norm_first: Whether to normalize inputs to attention and intermediate dense
55
56
      layers. If set False, output of attention and intermediate dense layers is
      normalized.
xinliupitt's avatar
xinliupitt committed
57
    norm_epsilon: Epsilon value to initialize normalization layers.
xinliupitt's avatar
xinliupitt committed
58
59
60
61
    intermediate_dropout: Dropout probability for intermediate_dropout_layer. If
      larger than 0.0, intermediate_dropout_layer is created and used after
      intermediate_activation_layer. Otherwise, intermediate_dropout_layer is
      None.
Hongkun Yu's avatar
Hongkun Yu committed
62
63
64
65
66
67
68
69
  """

  def __init__(self,
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
70
               output_range=None,
Hongkun Yu's avatar
Hongkun Yu committed
71
72
73
74
75
76
77
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
xinliupitt's avatar
xinliupitt committed
78
79
80
               use_bias=True,
               norm_first=False,
               norm_epsilon=1e-12,
xinliupitt's avatar
xinliupitt committed
81
               intermediate_dropout=0.0,
Hongkun Yu's avatar
Hongkun Yu committed
82
83
84
85
86
87
88
89
               **kwargs):
    super(Transformer, self).__init__(**kwargs)

    self._num_heads = num_attention_heads
    self._intermediate_size = intermediate_size
    self._intermediate_activation = intermediate_activation
    self._attention_dropout_rate = attention_dropout_rate
    self._dropout_rate = dropout_rate
90
    self._output_range = output_range
Hongkun Yu's avatar
Hongkun Yu committed
91
92
93
94
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
Hongkun Yu's avatar
Hongkun Yu committed
95
    self._activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
Hongkun Yu's avatar
Hongkun Yu committed
96
97
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)
xinliupitt's avatar
xinliupitt committed
98
99
100
    self._use_bias = use_bias
    self._norm_first = norm_first
    self._norm_epsilon = norm_epsilon
xinliupitt's avatar
xinliupitt committed
101
    self._intermediate_dropout = intermediate_dropout
Hongkun Yu's avatar
Hongkun Yu committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

  def build(self, input_shape):
    input_tensor = input_shape[0] if len(input_shape) == 2 else input_shape
    input_tensor_shape = tf.TensorShape(input_tensor)
    if len(input_tensor_shape) != 3:
      raise ValueError("TransformerLayer expects a three-dimensional input of "
                       "shape [batch, sequence, width].")
    batch_size, sequence_length, hidden_size = input_tensor_shape

    if len(input_shape) == 2:
      mask_tensor_shape = tf.TensorShape(input_shape[1])
      expected_mask_tensor_shape = tf.TensorShape(
          [batch_size, sequence_length, sequence_length])
      if not expected_mask_tensor_shape.is_compatible_with(mask_tensor_shape):
        raise ValueError("When passing a mask tensor to TransformerLayer, the "
                         "mask tensor must be of shape [batch, "
                         "sequence_length, sequence_length] (here %s). Got a "
                         "mask tensor of shape %s." %
                         (expected_mask_tensor_shape, mask_tensor_shape))
    if hidden_size % self._num_heads != 0:
      raise ValueError(
          "The input size (%d) is not a multiple of the number of attention "
          "heads (%d)" % (hidden_size, self._num_heads))
    self._attention_head_size = int(hidden_size // self._num_heads)
126
    common_kwargs = dict(
Hongkun Yu's avatar
Hongkun Yu committed
127
128
129
130
131
132
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
133
134
135
136
137
        bias_constraint=self._bias_constraint)
    self._attention_layer = attention.MultiHeadAttention(
        num_heads=self._num_heads,
        key_size=self._attention_head_size,
        dropout=self._attention_dropout_rate,
xinliupitt's avatar
xinliupitt committed
138
        use_bias=self._use_bias,
139
140
        name="self_attention",
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
141
    self._attention_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
Zongwei Zhou's avatar
Zongwei Zhou committed
142
143
    # Use float32 in layernorm for numeric stability.
    # It is probably safe in mixed_float16, but we haven't validated this yet.
Hongkun Yu's avatar
Hongkun Yu committed
144
145
    self._attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
Chen Chen's avatar
Chen Chen committed
146
147
            name="self_attention_layer_norm",
            axis=-1,
xinliupitt's avatar
xinliupitt committed
148
            epsilon=self._norm_epsilon,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
149
            dtype=tf.float32))
150
151
152
153
154
155
    self._intermediate_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, self._intermediate_size),
        bias_axes="d",
        name="intermediate",
        **common_kwargs)
156
157
158
159
160
161
    policy = tf.keras.mixed_precision.experimental.global_policy()
    if policy.name == "mixed_bfloat16":
      # bfloat16 causes BERT with the LAMB optimizer to not converge
      # as well, so we use float32.
      # TODO(b/154538392): Investigate this.
      policy = tf.float32
Chen Chen's avatar
Chen Chen committed
162
    self._intermediate_activation_layer = tf.keras.layers.Activation(
163
        self._intermediate_activation, dtype=policy)
xinliupitt's avatar
xinliupitt committed
164
165
166
167
168
    if self._intermediate_dropout > 0.0:
      self.intermediate_dropout_layer = tf.keras.layers.Dropout(
          rate=self._intermediate_dropout)
    else:
      self.intermediate_dropout_layer = None
169
170
171
172
173
174
    self._output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
        name="output",
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
175
    self._output_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
Zongwei Zhou's avatar
Zongwei Zhou committed
176
    # Use float32 in layernorm for numeric stability.
Hongkun Yu's avatar
Hongkun Yu committed
177
    self._output_layer_norm = tf.keras.layers.LayerNormalization(
178
179
180
        name="output_layer_norm",
        axis=-1,
        epsilon=self._norm_epsilon,
xinliupitt's avatar
xinliupitt committed
181
        dtype=tf.float32)
Hongkun Yu's avatar
Hongkun Yu committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

    super(Transformer, self).build(input_shape)

  def get_config(self):
    config = {
        "num_attention_heads":
            self._num_heads,
        "intermediate_size":
            self._intermediate_size,
        "intermediate_activation":
            self._intermediate_activation,
        "dropout_rate":
            self._dropout_rate,
        "attention_dropout_rate":
            self._attention_dropout_rate,
197
198
        "output_range":
            self._output_range,
Hongkun Yu's avatar
Hongkun Yu committed
199
200
201
202
203
204
205
206
207
208
209
210
211
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
xinliupitt's avatar
xinliupitt committed
212
213
214
215
216
217
            tf.keras.constraints.serialize(self._bias_constraint),
        "use_bias":
            self._use_bias,
        "norm_first":
            self._norm_first,
        "norm_epsilon":
xinliupitt's avatar
xinliupitt committed
218
219
220
            self._norm_epsilon,
        "intermediate_dropout":
            self._intermediate_dropout
Hongkun Yu's avatar
Hongkun Yu committed
221
222
223
224
225
226
227
228
229
230
    }
    base_config = super(Transformer, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs):
    if isinstance(inputs, (list, tuple)) and len(inputs) == 2:
      input_tensor, attention_mask = inputs
    else:
      input_tensor, attention_mask = (inputs, None)

231
232
233
234
    if self._output_range:
      target_tensor = input_tensor[:, 0:self._output_range, :]
      attention_mask = attention_mask[:, 0:self._output_range, :]
    else:
xinliupitt's avatar
xinliupitt committed
235
236
237
      if self._norm_first:
        source_tensor = input_tensor
        input_tensor = self._attention_layer_norm(input_tensor)
238
      target_tensor = input_tensor
Hongkun Yu's avatar
Hongkun Yu committed
239

240
241
    attention_output = self._attention_layer(
        query=target_tensor, value=input_tensor, attention_mask=attention_mask)
242
    attention_output = self._attention_dropout(attention_output)
xinliupitt's avatar
xinliupitt committed
243
244
245
246
247
248
249
250
    if self._norm_first:
      attention_output = source_tensor + attention_output
    else:
      attention_output = self._attention_layer_norm(target_tensor +
                                                    attention_output)
    if self._norm_first:
      source_attention_output = attention_output
      attention_output = self._output_layer_norm(attention_output)
251
252
253
    intermediate_output = self._intermediate_dense(attention_output)
    intermediate_output = self._intermediate_activation_layer(
        intermediate_output)
xinliupitt's avatar
xinliupitt committed
254
255
    if self.intermediate_dropout_layer:
      intermediate_output = self.intermediate_dropout_layer(intermediate_output)
256
257
258
259
260
261
    layer_output = self._output_dense(intermediate_output)
    layer_output = self._output_dropout(layer_output)
    # During mixed precision training, attention_output is from layer norm and
    # is always fp32 for now. Cast layer_output to fp32 for the subsequent
    # add.
    layer_output = tf.cast(layer_output, tf.float32)
xinliupitt's avatar
xinliupitt committed
262
263
264
265
    if self._norm_first:
      layer_output = source_attention_output + layer_output
    else:
      layer_output = self._output_layer_norm(layer_output + attention_output)
266
267

    return layer_output
268
269


Chen Chen's avatar
Chen Chen committed
270
271
@tf.keras.utils.register_keras_serializable(package="Text")
@gin.configurable
272
273
274
275
276
class CompiledTransformer(Transformer):

  @tf_function_if_eager(experimental_compile=True)
  def call(self, inputs):
    return super(CompiledTransformer, self).call(inputs)
277
278
279
280
281
282
283
284
285
286


@tf.keras.utils.register_keras_serializable(package="Text")
class TransformerDecoderLayer(tf.keras.layers.Layer):
  """Single transformer layer for decoder.

  It has three sub-layers:
  (1) a multi-head self-attention mechanism.
  (2) a encoder-decoder attention.
  (3) a positionwise fully connected feed-forward network.
Hongkun Yu's avatar
Hongkun Yu committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

  Arguments:
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
    multi_channel_cross_attention: Whether to use `MultiChannelAttention` for
      cross-attention between target sequences and source sequences.
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
xinliupitt's avatar
xinliupitt committed
303
304
    use_bias: Whether to enable use_bias in attention layer. If set False,
      use_bias in attention layer is disabled.
xinliupitt's avatar
xinliupitt committed
305
    norm_first: Whether to normalize inputs to attention and intermediate dense
306
307
      layers. If set False, output of attention and intermediate dense layers is
      normalized.
xinliupitt's avatar
xinliupitt committed
308
    norm_epsilon: Epsilon value to initialize normalization layers.
xinliupitt's avatar
xinliupitt committed
309
310
311
312
    intermediate_dropout: Dropout probability for intermediate_dropout_layer. If
      larger than 0.0, intermediate_dropout_layer is created and used after
      intermediate_activation_layer. Otherwise, intermediate_dropout_layer is
      None.
313
314
315
  """

  def __init__(self,
Hongkun Yu's avatar
Hongkun Yu committed
316
317
318
319
320
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
321
               multi_channel_cross_attention=False,
Hongkun Yu's avatar
Hongkun Yu committed
322
323
324
325
326
327
328
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
xinliupitt's avatar
xinliupitt committed
329
330
331
               use_bias=True,
               norm_first=False,
               norm_epsilon=1e-12,
xinliupitt's avatar
xinliupitt committed
332
               intermediate_dropout=0.0,
333
334
335
336
337
338
               **kwargs):
    super(TransformerDecoderLayer, self).__init__(**kwargs)
    self.num_attention_heads = num_attention_heads
    self.intermediate_size = intermediate_size
    self.intermediate_activation = tf.keras.activations.get(
        intermediate_activation)
Hongkun Yu's avatar
Hongkun Yu committed
339
340
    self.dropout_rate = dropout_rate
    self.attention_dropout_rate = attention_dropout_rate
341
    self.multi_channel_cross_attention = multi_channel_cross_attention
Hongkun Yu's avatar
Hongkun Yu committed
342
343
344
345
346
347
348
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
    self._activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)
xinliupitt's avatar
xinliupitt committed
349
350
351
    self._use_bias = use_bias
    self._norm_first = norm_first
    self._norm_epsilon = norm_epsilon
xinliupitt's avatar
xinliupitt committed
352
    self._intermediate_dropout = intermediate_dropout
353
354
355
356
357
    if self.multi_channel_cross_attention:
      self._cross_attention_cls = multi_channel_attention.MultiChannelAttention
    else:
      self._cross_attention_cls = attention.MultiHeadAttention

Hongkun Yu's avatar
Hongkun Yu committed
358
359
360
361
362
363
364
  def build(self, input_shape):
    target_tensor_shape = tf.TensorShape(input_shape[0])
    if len(target_tensor_shape) != 3:
      raise ValueError("TransformerLayer expects a three-dimensional input of "
                       "shape [batch, sequence, width].")
    hidden_size = target_tensor_shape[2]
    if hidden_size % self.num_attention_heads != 0:
365
366
      raise ValueError(
          "The hidden size (%d) is not a multiple of the number of attention "
Hongkun Yu's avatar
Hongkun Yu committed
367
368
          "heads (%d)" % (hidden_size, self.num_attention_heads))
    self.attention_head_size = int(hidden_size / self.num_attention_heads)
369
    common_kwargs = dict(
370
371
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
Hongkun Yu's avatar
Hongkun Yu committed
372
373
374
375
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
376
377
378
379
380
381
        bias_constraint=self._bias_constraint)
    # Self attention.
    self.self_attention = attention.CachedAttention(
        num_heads=self.num_attention_heads,
        key_size=self.attention_head_size,
        dropout=self.attention_dropout_rate,
xinliupitt's avatar
xinliupitt committed
382
        use_bias=self._use_bias,
383
384
385
386
387
388
389
390
        name="self_attention",
        **common_kwargs)
    self.self_attention_output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
        name="output",
        **common_kwargs)
391
    self.self_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
392
        rate=self.dropout_rate)
393
394
    self.self_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
395
            name="self_attention_layer_norm",
396
397
            axis=-1,
            epsilon=self._norm_epsilon))
398
399
400
401
    # Encoder-decoder attention.
    self.encdec_attention = self._cross_attention_cls(
        num_heads=self.num_attention_heads,
        key_size=self.attention_head_size,
Hongkun Yu's avatar
Hongkun Yu committed
402
403
        dropout=self.attention_dropout_rate,
        output_shape=hidden_size,
xinliupitt's avatar
xinliupitt committed
404
        use_bias=self._use_bias,
405
406
        name="attention/encdec",
        **common_kwargs)
407
408

    self.encdec_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
409
        rate=self.dropout_rate)
410
411
    self.encdec_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
412
            name="attention/encdec_output_layer_norm",
413
414
            axis=-1,
            epsilon=self._norm_epsilon))
415
416

    # Feed-forward projection.
417
418
419
420
421
422
    self.intermediate_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, self.intermediate_size),
        bias_axes="d",
        name="intermediate",
        **common_kwargs)
423
424
    self.intermediate_activation_layer = tf.keras.layers.Activation(
        self.intermediate_activation)
xinliupitt's avatar
xinliupitt committed
425
426
427
428
429
    if self._intermediate_dropout > 0.0:
      self.intermediate_dropout_layer = tf.keras.layers.Dropout(
          rate=self._intermediate_dropout)
    else:
      self.intermediate_dropout_layer = None
430
431
432
433
434
435
    self.output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
        name="output",
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
436
    self.output_dropout = tf.keras.layers.Dropout(rate=self.dropout_rate)
437
    self.output_layer_norm = tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
438
        name="output_layer_norm", axis=-1, epsilon=self._norm_epsilon)
439
440
    super(TransformerDecoderLayer, self).build(input_shape)

xinliupitt's avatar
xinliupitt committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
  def get_config(self):
    config = {
        "num_attention_heads":
            self.num_attention_heads,
        "intermediate_size":
            self.intermediate_size,
        "intermediate_activation":
            self.intermediate_activation,
        "dropout_rate":
            self.dropout_rate,
        "attention_dropout_rate":
            self.attention_dropout_rate,
        "multi_channel_cross_attention":
            self.multi_channel_cross_attention,
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
            tf.keras.constraints.serialize(self._bias_constraint),
        "use_bias":
            self._use_bias,
        "norm_first":
            self._norm_first,
        "norm_epsilon":
xinliupitt's avatar
xinliupitt committed
474
475
476
            self._norm_epsilon,
        "intermediate_dropout":
            self._intermediate_dropout
xinliupitt's avatar
xinliupitt committed
477
478
479
480
    }
    base_config = super(TransformerDecoderLayer, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
  def common_layers_with_encoder(self):
    """Gets layer objects that can make a Transformer encoder block."""
    return [
        self.self_attention, self.self_attention_layer_norm,
        self.intermediate_dense, self.output_dense, self.output_layer_norm
    ]

  def call(self, inputs, cache=None, decode_loop_step=None):
    if self.multi_channel_cross_attention:
      if len(inputs) != 5:
        raise ValueError(
            "TransformerDecoderLayer must have 5 inputs, when it uses "
            "multi_channel_cross_attention. But it got: %d" % len(inputs))
    elif len(inputs) != 4:
      raise ValueError(
          "TransformerDecoderLayer must have 4 inputs, but it got: %d" %
          len(inputs))
    input_tensor, memory, attention_mask, self_attention_mask = inputs[:4]
xinliupitt's avatar
xinliupitt committed
499
500
501
    source_tensor = input_tensor
    if self._norm_first:
      input_tensor = self.self_attention_layer_norm(input_tensor)
502
    self_attention_output, cache = self.self_attention(
503
504
        query=input_tensor,
        value=input_tensor,
505
506
507
508
        attention_mask=self_attention_mask,
        cache=cache,
        decode_loop_step=decode_loop_step)
    self_attention_output = self.self_attention_dropout(self_attention_output)
xinliupitt's avatar
xinliupitt committed
509
510
511
512
513
514
515
516
517
    if self._norm_first:
      self_attention_output = source_tensor + self_attention_output
    else:
      self_attention_output = self.self_attention_layer_norm(
          input_tensor + self_attention_output)
    if self._norm_first:
      source_self_attention_output = self_attention_output
      self_attention_output = self.encdec_attention_layer_norm(
          self_attention_output)
518
519
520
521
    cross_attn_inputs = dict(
        query=self_attention_output,
        value=memory,
        attention_mask=attention_mask)
522
523
    if self.multi_channel_cross_attention:
      # Accesses the 5-th input tensor for the doc-attention probabilities.
524
525
      cross_attn_inputs["context_attention_weights"] = inputs[-1]
    attention_output = self.encdec_attention(**cross_attn_inputs)
526
    attention_output = self.encdec_attention_dropout(attention_output)
xinliupitt's avatar
xinliupitt committed
527
528
529
530
    if self._norm_first:
      attention_output = source_self_attention_output + attention_output
    else:
      attention_output = self.encdec_attention_layer_norm(
531
          self_attention_output + attention_output)
xinliupitt's avatar
xinliupitt committed
532
533
534
    if self._norm_first:
      source_attention_output = attention_output
      attention_output = self.output_layer_norm(attention_output)
535
536
537
538

    intermediate_output = self.intermediate_dense(attention_output)
    intermediate_output = self.intermediate_activation_layer(
        intermediate_output)
xinliupitt's avatar
xinliupitt committed
539
540
    if self.intermediate_dropout_layer:
      intermediate_output = self.intermediate_dropout_layer(intermediate_output)
541
542
    layer_output = self.output_dense(intermediate_output)
    layer_output = self.output_dropout(layer_output)
xinliupitt's avatar
xinliupitt committed
543
544
545
546
    if self._norm_first:
      layer_output = source_attention_output + layer_output
    else:
      layer_output = self.output_layer_norm(layer_output + attention_output)
547
    return layer_output, cache