coco-centernet-hourglass-gpu.yaml 2.28 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# COCO AP 40.01% for float16 precision is achieved with the configuration below.
runtime:
  distribution_strategy: 'mirrored'
  mixed_precision_dtype: 'float16'
  loss_scale: 'dynamic'
  num_gpus: 8
task:
  model:
    num_classes: 90
    max_num_instances: 128
    input_size: [512, 512, 3]
    backbone:
      type: hourglass
      hourglass:
        model_id: 52
        num_hourglasses: 2
    head:
      heatmap_bias: -2.19
      input_levels: ['2_0', '2']
    detection_generator:
      max_detections: 100
      peak_error: 0.000001
      peak_extract_kernel_size: 3
      use_nms: false
      nms_pre_thresh: 0.1
      nms_thresh: 0.4
      class_offset: 1
    norm_activation:
      norm_epsilon: 0.00001
      norm_momentum: 0.1
      use_sync_bn: true
  losses:
    detection:
      offset_weight: 1.0
      scale_weight: 0.1
    gaussian_iou: 0.7
    class_offset: 1
  per_category_metrics: false
  weight_decay: 0.0005
  gradient_clip_norm: 10.0
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
41
42
  annotation_file: '/readahead/200M/placer/prod/home/tensorflow-performance-data/datasets/coco/instances_val2017.json'
  init_checkpoint: gs://tf_model_garden/vision/centernet/extremenet_hg104_512x512_coco17
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
43
44
  init_checkpoint_modules: 'backbone'
  train_data:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
45
    input_path: '/readahead/200M/placer/prod/home/tensorflow-performance-data/datasets/coco/train*'
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    drop_remainder: true
    dtype: 'float16'
    global_batch_size: 64
    is_training: true
    parser:
      aug_rand_hflip: true
      aug_scale_min: 0.6
      aug_scale_max: 1.3
      aug_rand_saturation: true
      aug_rand_brightness: true
      aug_rand_hue: true
      aug_rand_contrast: true
      odapi_augmentation: true
  validation_data:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
60
    input_path: '/readahead/200M/placer/prod/home/tensorflow-performance-data/datasets/coco/val*'
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    drop_remainder: false
    dtype: 'float16'
    global_batch_size: 16
    is_training: false
trainer:
  train_steps: 280000
  validation_steps: 312  # 5000 / 16
  steps_per_loop: 1848  # 118287 / 128
  validation_interval: 1848
  summary_interval: 1848
  checkpoint_interval: 1848
  optimizer_config:
    learning_rate:
      type: 'cosine'
      cosine:
        initial_learning_rate: 0.0005
        decay_steps: 280000
    optimizer:
      type: adam
      adam:
        epsilon: 0.0000001
    warmup:
      type: 'linear'
      linear:
        warmup_steps: 2000