# COCO AP 40.01% for float16 precision is achieved with the configuration below. runtime: distribution_strategy: 'mirrored' mixed_precision_dtype: 'float16' loss_scale: 'dynamic' num_gpus: 8 task: model: num_classes: 90 max_num_instances: 128 input_size: [512, 512, 3] backbone: type: hourglass hourglass: model_id: 52 num_hourglasses: 2 head: heatmap_bias: -2.19 input_levels: ['2_0', '2'] detection_generator: max_detections: 100 peak_error: 0.000001 peak_extract_kernel_size: 3 use_nms: false nms_pre_thresh: 0.1 nms_thresh: 0.4 class_offset: 1 norm_activation: norm_epsilon: 0.00001 norm_momentum: 0.1 use_sync_bn: true losses: detection: offset_weight: 1.0 scale_weight: 0.1 gaussian_iou: 0.7 class_offset: 1 per_category_metrics: false weight_decay: 0.0005 gradient_clip_norm: 10.0 annotation_file: '/readahead/200M/placer/prod/home/tensorflow-performance-data/datasets/coco/instances_val2017.json' init_checkpoint: gs://tf_model_garden/vision/centernet/extremenet_hg104_512x512_coco17 init_checkpoint_modules: 'backbone' train_data: input_path: '/readahead/200M/placer/prod/home/tensorflow-performance-data/datasets/coco/train*' drop_remainder: true dtype: 'float16' global_batch_size: 64 is_training: true parser: aug_rand_hflip: true aug_scale_min: 0.6 aug_scale_max: 1.3 aug_rand_saturation: true aug_rand_brightness: true aug_rand_hue: true aug_rand_contrast: true odapi_augmentation: true validation_data: input_path: '/readahead/200M/placer/prod/home/tensorflow-performance-data/datasets/coco/val*' drop_remainder: false dtype: 'float16' global_batch_size: 16 is_training: false trainer: train_steps: 280000 validation_steps: 312 # 5000 / 16 steps_per_loop: 1848 # 118287 / 128 validation_interval: 1848 summary_interval: 1848 checkpoint_interval: 1848 optimizer_config: learning_rate: type: 'cosine' cosine: initial_learning_rate: 0.0005 decay_steps: 280000 optimizer: type: adam adam: epsilon: 0.0000001 warmup: type: 'linear' linear: warmup_steps: 2000