run_pretraining.py 6.06 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Hongkun Yu's avatar
Hongkun Yu committed
15
"""Run masked LM/next sentence pre-training for BERT in TF 2.x."""
16
17
18
19
20
21
22
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import app
from absl import flags
from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
23
import gin
24
import tensorflow as tf
25
from official.modeling import performance
26
from official.nlp import optimization
27
from official.nlp.bert import bert_models
28
from official.nlp.bert import common_flags
29
from official.nlp.bert import configs
30
from official.nlp.bert import input_pipeline
31
from official.nlp.bert import model_training_utils
32
from official.utils.misc import distribution_utils
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

flags.DEFINE_string('input_files', None,
                    'File path to retrieve training data for pre-training.')
# Model training specific flags.
flags.DEFINE_integer(
    'max_seq_length', 128,
    'The maximum total input sequence length after WordPiece tokenization. '
    'Sequences longer than this will be truncated, and sequences shorter '
    'than this will be padded.')
flags.DEFINE_integer('max_predictions_per_seq', 20,
                     'Maximum predictions per sequence_output.')
flags.DEFINE_integer('train_batch_size', 32, 'Total batch size for training.')
flags.DEFINE_integer('num_steps_per_epoch', 1000,
                     'Total number of training steps to run per epoch.')
flags.DEFINE_float('warmup_steps', 10000,
                   'Warmup steps for Adam weight decay optimizer.')

51
common_flags.define_common_bert_flags()
Hongkun Yu's avatar
Hongkun Yu committed
52
common_flags.define_gin_flags()
53

54
55
56
FLAGS = flags.FLAGS


Hongkun Yu's avatar
Hongkun Yu committed
57
58
def get_pretrain_dataset_fn(input_file_pattern, seq_length,
                            max_predictions_per_seq, global_batch_size):
59
  """Returns input dataset from input file string."""
60
  def _dataset_fn(ctx=None):
61
    """Returns tf.data.Dataset for distributed BERT pretraining."""
Hongkun Yu's avatar
Hongkun Yu committed
62
    input_patterns = input_file_pattern.split(',')
Hongkun Yu's avatar
Hongkun Yu committed
63
    batch_size = ctx.get_per_replica_batch_size(global_batch_size)
64
    train_dataset = input_pipeline.create_pretrain_dataset(
Hongkun Yu's avatar
Hongkun Yu committed
65
        input_patterns,
66
67
68
69
70
        seq_length,
        max_predictions_per_seq,
        batch_size,
        is_training=True,
        input_pipeline_context=ctx)
71
72
    return train_dataset

Hongkun Yu's avatar
Hongkun Yu committed
73
  return _dataset_fn
74
75


76
def get_loss_fn():
77
78
79
  """Returns loss function for BERT pretraining."""

  def _bert_pretrain_loss_fn(unused_labels, losses, **unused_args):
80
    return tf.reduce_mean(losses)
81
82
83
84
85
86
87
88
89
90

  return _bert_pretrain_loss_fn


def run_customized_training(strategy,
                            bert_config,
                            max_seq_length,
                            max_predictions_per_seq,
                            model_dir,
                            steps_per_epoch,
91
                            steps_per_loop,
92
93
94
95
                            epochs,
                            initial_lr,
                            warmup_steps,
                            input_files,
96
                            train_batch_size):
97
98
  """Run BERT pretrain model training using low-level API."""

Hongkun Yu's avatar
Hongkun Yu committed
99
100
101
  train_input_fn = get_pretrain_dataset_fn(input_files, max_seq_length,
                                           max_predictions_per_seq,
                                           train_batch_size)
102
103

  def _get_pretrain_model():
104
    """Gets a pretraining model."""
105
106
    pretrain_model, core_model = bert_models.pretrain_model(
        bert_config, max_seq_length, max_predictions_per_seq)
107
    optimizer = optimization.create_optimizer(
108
109
        initial_lr, steps_per_epoch * epochs, warmup_steps,
        FLAGS.optimizer_type)
110
111
112
113
    pretrain_model.optimizer = performance.configure_optimizer(
        optimizer,
        use_float16=common_flags.use_float16(),
        use_graph_rewrite=common_flags.use_graph_rewrite())
114
115
    return pretrain_model, core_model

116
  trained_model = model_training_utils.run_customized_training_loop(
117
118
      strategy=strategy,
      model_fn=_get_pretrain_model,
119
120
      loss_fn=get_loss_fn(),
      scale_loss=FLAGS.scale_loss,
121
122
123
      model_dir=model_dir,
      train_input_fn=train_input_fn,
      steps_per_epoch=steps_per_epoch,
124
      steps_per_loop=steps_per_loop,
Chen Chen's avatar
Chen Chen committed
125
126
      epochs=epochs,
      sub_model_export_name='pretrained/bert_model')
127

128
129
  return trained_model

130
131
132
133

def run_bert_pretrain(strategy):
  """Runs BERT pre-training."""

134
  bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file)
135
136
137
138
139
140
141
  if not strategy:
    raise ValueError('Distribution strategy is not specified.')

  # Runs customized training loop.
  logging.info('Training using customized training loop TF 2.0 with distrubuted'
               'strategy.')

142
143
  performance.set_mixed_precision_policy(common_flags.dtype())

144
145
146
147
148
149
150
  return run_customized_training(
      strategy,
      bert_config,
      FLAGS.max_seq_length,
      FLAGS.max_predictions_per_seq,
      FLAGS.model_dir,
      FLAGS.num_steps_per_epoch,
151
      FLAGS.steps_per_loop,
152
153
154
155
      FLAGS.num_train_epochs,
      FLAGS.learning_rate,
      FLAGS.warmup_steps,
      FLAGS.input_files,
156
      FLAGS.train_batch_size)
157
158
159
160


def main(_):
  # Users should always run this script under TF 2.x
Hongkun Yu's avatar
Hongkun Yu committed
161
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param)
162
163
  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'
164
165
166
167
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
168
169
170
  if strategy:
    print('***** Number of cores used : ', strategy.num_replicas_in_sync)

171
  run_bert_pretrain(strategy)
172
173
174
175


if __name__ == '__main__':
  app.run(main)