run_classifier.py 15.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""BERT classification finetuning runner in TF 2.x."""
16
17
18
19
20
21
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import math
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
import os
23
24
25
26
27

from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
28
from official.modeling import performance
29
from official.nlp import optimization
30
from official.nlp.bert import bert_models
31
from official.nlp.bert import common_flags
32
from official.nlp.bert import configs as bert_configs
33
34
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
35
from official.nlp.bert import model_training_utils
36
from official.utils.misc import distribution_utils
37
from official.utils.misc import keras_utils
38

39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
flags.DEFINE_enum(
    'mode', 'train_and_eval', ['train_and_eval', 'export_only'],
    'One of {"train_and_eval", "export_only"}. `train_and_eval`: '
    'trains the model and evaluates in the meantime. '
    '`export_only`: will take the latest checkpoint inside '
    'model_dir and export a `SavedModel`.')
flags.DEFINE_string('train_data_path', None,
                    'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
                    'Path to evaluation data for BERT classifier.')
# Model training specific flags.
flags.DEFINE_string(
    'input_meta_data_path', None,
    'Path to file that contains meta data about input '
    'to be used for training and evaluation.')
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
56
flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.')
57
58

common_flags.define_common_bert_flags()
59
60
61
62

FLAGS = flags.FLAGS


63
def get_loss_fn(num_classes):
64
65
66
67
68
69
70
71
72
73
  """Gets the classification loss function."""

  def classification_loss_fn(labels, logits):
    """Classification loss."""
    labels = tf.squeeze(labels)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    one_hot_labels = tf.one_hot(
        tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(
        tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
74
    return tf.reduce_mean(per_example_loss)
75
76
77
78

  return classification_loss_fn


Hongkun Yu's avatar
Hongkun Yu committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
def get_dataset_fn(input_file_pattern, max_seq_length, global_batch_size,
                   is_training):
  """Gets a closure to create a dataset."""

  def _dataset_fn(ctx=None):
    """Returns tf.data.Dataset for distributed BERT pretraining."""
    batch_size = ctx.get_per_replica_batch_size(
        global_batch_size) if ctx else global_batch_size
    dataset = input_pipeline.create_classifier_dataset(
        input_file_pattern,
        max_seq_length,
        batch_size,
        is_training=is_training,
        input_pipeline_context=ctx)
    return dataset

  return _dataset_fn


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
98
99
100
101
102
103
104
105
106
107
108
def run_bert_classifier(strategy,
                        bert_config,
                        input_meta_data,
                        model_dir,
                        epochs,
                        steps_per_epoch,
                        steps_per_loop,
                        eval_steps,
                        warmup_steps,
                        initial_lr,
                        init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
109
110
                        train_input_fn,
                        eval_input_fn,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
111
                        custom_callbacks=None,
112
113
                        run_eagerly=False,
                        use_keras_compile_fit=False):
114
115
116
117
118
  """Run BERT classifier training using low-level API."""
  max_seq_length = input_meta_data['max_seq_length']
  num_classes = input_meta_data['num_labels']

  def _get_classifier_model():
119
    """Gets a classifier model."""
120
    classifier_model, core_model = (
121
122
123
124
        bert_models.classifier_model(
            bert_config,
            num_classes,
            max_seq_length,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
125
126
            hub_module_url=FLAGS.hub_module_url,
            hub_module_trainable=FLAGS.hub_module_trainable))
127
    optimizer = optimization.create_optimizer(
128
129
        initial_lr, steps_per_epoch * epochs, warmup_steps,
        FLAGS.optimizer_type)
130
131
132
133
    classifier_model.optimizer = performance.configure_optimizer(
        optimizer,
        use_float16=common_flags.use_float16(),
        use_graph_rewrite=common_flags.use_graph_rewrite())
134
135
    return classifier_model, core_model

136
  loss_fn = get_loss_fn(num_classes)
137
138
139
140
141
142
143

  # Defines evaluation metrics function, which will create metrics in the
  # correct device and strategy scope.
  def metric_fn():
    return tf.keras.metrics.SparseCategoricalAccuracy(
        'test_accuracy', dtype=tf.float32)

144
  if use_keras_compile_fit:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
145
146
    # Start training using Keras compile/fit API.
    logging.info('Training using TF 2.0 Keras compile/fit API with '
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
147
                 'distribution strategy.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
148
149
150
151
152
153
154
155
156
157
158
    return run_keras_compile_fit(
        model_dir,
        strategy,
        _get_classifier_model,
        train_input_fn,
        eval_input_fn,
        loss_fn,
        metric_fn,
        init_checkpoint,
        epochs,
        steps_per_epoch,
Hongkun Yu's avatar
Hongkun Yu committed
159
        steps_per_loop,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
160
        eval_steps,
161
        custom_callbacks=custom_callbacks)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
162
163
164

  # Use user-defined loop to start training.
  logging.info('Training using customized training loop TF 2.0 with '
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
165
               'distribution strategy.')
166
167
168
169
170
171
  return model_training_utils.run_customized_training_loop(
      strategy=strategy,
      model_fn=_get_classifier_model,
      loss_fn=loss_fn,
      model_dir=model_dir,
      steps_per_epoch=steps_per_epoch,
172
      steps_per_loop=steps_per_loop,
173
174
175
176
177
178
      epochs=epochs,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      eval_steps=eval_steps,
      init_checkpoint=init_checkpoint,
      metric_fn=metric_fn,
179
180
      custom_callbacks=custom_callbacks,
      run_eagerly=run_eagerly)
181
182


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
183
184
185
186
187
188
189
190
191
192
def run_keras_compile_fit(model_dir,
                          strategy,
                          model_fn,
                          train_input_fn,
                          eval_input_fn,
                          loss_fn,
                          metric_fn,
                          init_checkpoint,
                          epochs,
                          steps_per_epoch,
Hongkun Yu's avatar
Hongkun Yu committed
193
                          steps_per_loop,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
                          eval_steps,
                          custom_callbacks=None):
  """Runs BERT classifier model using Keras compile/fit API."""

  with strategy.scope():
    training_dataset = train_input_fn()
    evaluation_dataset = eval_input_fn()
    bert_model, sub_model = model_fn()
    optimizer = bert_model.optimizer

    if init_checkpoint:
      checkpoint = tf.train.Checkpoint(model=sub_model)
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()

Hongkun Yu's avatar
Hongkun Yu committed
208
209
210
211
212
    bert_model.compile(
        optimizer=optimizer,
        loss=loss_fn,
        metrics=[metric_fn()],
        experimental_steps_per_execution=steps_per_loop)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
213

214
215
216
217
218
    summary_dir = os.path.join(model_dir, 'summaries')
    summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
    checkpoint_path = os.path.join(model_dir, 'checkpoint')
    checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
        checkpoint_path, save_weights_only=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

    if custom_callbacks is not None:
      custom_callbacks += [summary_callback, checkpoint_callback]
    else:
      custom_callbacks = [summary_callback, checkpoint_callback]

    bert_model.fit(
        x=training_dataset,
        validation_data=evaluation_dataset,
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        validation_steps=eval_steps,
        callbacks=custom_callbacks)

    return bert_model


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
def get_predictions_and_labels(strategy, trained_model, eval_input_fn,
                               eval_steps):
  """Obtains predictions of trained model on evaluation data.

  Note that list of labels is returned along with the predictions because the
  order changes on distributing dataset over TPU pods.

  Args:
    strategy: Distribution strategy.
    trained_model: Trained model with preloaded weights.
    eval_input_fn: Input function for evaluation data.
    eval_steps: Number of evaluation steps.

  Returns:
    predictions: List of predictions.
    labels: List of gold labels corresponding to predictions.
  """

  @tf.function
  def test_step(iterator):
    """Computes predictions on distributed devices."""

    def _test_step_fn(inputs):
      """Replicated predictions."""
      inputs, labels = inputs
      model_outputs = trained_model(inputs, training=False)
      return model_outputs, labels

Ken Franko's avatar
Ken Franko committed
264
    outputs, labels = strategy.run(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        _test_step_fn, args=(next(iterator),))
    # outputs: current batch logits as a tuple of shard logits
    outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                    outputs)
    labels = tf.nest.map_structure(strategy.experimental_local_results, labels)
    return outputs, labels

  def _run_evaluation(test_iterator):
    """Runs evaluation steps."""
    preds, golds = list(), list()
    for _ in range(eval_steps):
      logits, labels = test_step(test_iterator)
      for cur_logits, cur_labels in zip(logits, labels):
        preds.extend(tf.math.argmax(cur_logits, axis=1).numpy())
        golds.extend(cur_labels.numpy().tolist())
    return preds, golds

  test_iter = iter(
      strategy.experimental_distribute_datasets_from_function(eval_input_fn))
  predictions, labels = _run_evaluation(test_iter)

  return predictions, labels


289
def export_classifier(model_export_path, input_meta_data,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
290
                      restore_model_using_load_weights, bert_config, model_dir):
291
292
293
294
295
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
296
    restore_model_using_load_weights: Whether to use checkpoint.restore() API
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
297
298
299
300
301
302
303
      for custom checkpoint or to use model.load_weights() API. There are 2
      different ways to save checkpoints. One is using tf.train.Checkpoint and
      another is using Keras model.save_weights(). Custom training loop
      implementation uses tf.train.Checkpoint API and Keras ModelCheckpoint
      callback internally uses model.save_weights() API. Since these two API's
      cannot be used together, model loading logic must be take into account how
      model checkpoint was saved.
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
304
305
306
    bert_config: Bert configuration file to define core bert layers.
    model_dir: The directory where the model weights and training/evaluation
      summaries are stored.
307
308
309
310
311
312

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
313
314
  if not model_dir:
    raise ValueError('Export path is not specified: %s' % model_dir)
315

Zongwei Zhou's avatar
Zongwei Zhou committed
316
317
  # Export uses float32 for now, even if training uses mixed precision.
  tf.keras.mixed_precision.experimental.set_policy('float32')
318
  classifier_model = bert_models.classifier_model(
Zongwei Zhou's avatar
Zongwei Zhou committed
319
      bert_config, input_meta_data['num_labels'],
320
      input_meta_data['max_seq_length'])[0]
321

322
  model_saving_utils.export_bert_model(
323
324
      model_export_path,
      model=classifier_model,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
325
      checkpoint_dir=model_dir,
326
      restore_model_using_load_weights=restore_model_using_load_weights)
327
328


Hongkun Yu's avatar
Hongkun Yu committed
329
330
def run_bert(strategy,
             input_meta_data,
331
             model_config,
Hongkun Yu's avatar
Hongkun Yu committed
332
333
             train_input_fn=None,
             eval_input_fn=None):
334
335
  """Run BERT training."""
  if FLAGS.mode == 'export_only':
336
337
338
339
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
    export_classifier(FLAGS.model_export_path, input_meta_data,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
340
                      FLAGS.use_keras_compile_fit,
341
                      model_config, FLAGS.model_dir)
342
343
344
345
    return

  if FLAGS.mode != 'train_and_eval':
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
346
347
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_config_v2(FLAGS.enable_xla)
348
  performance.set_mixed_precision_policy(common_flags.dtype())
349
350
351
352
353
354
355
356
357
358

  epochs = FLAGS.num_train_epochs
  train_data_size = input_meta_data['train_data_size']
  steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
  warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
  eval_steps = int(
      math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

  if not strategy:
    raise ValueError('Distribution strategy has not been specified.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
359

360
361
362
363
364
365
366
367
368
  if FLAGS.log_steps:
    custom_callbacks = [keras_utils.TimeHistory(
        batch_size=FLAGS.train_batch_size,
        log_steps=FLAGS.log_steps,
        logdir=FLAGS.model_dir,
    )]
  else:
    custom_callbacks = None

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
369
  trained_model = run_bert_classifier(
370
      strategy,
371
      model_config,
372
373
374
375
      input_meta_data,
      FLAGS.model_dir,
      epochs,
      steps_per_epoch,
376
      FLAGS.steps_per_loop,
377
378
379
380
      eval_steps,
      warmup_steps,
      FLAGS.learning_rate,
      FLAGS.init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
381
382
      train_input_fn,
      eval_input_fn,
383
      run_eagerly=FLAGS.run_eagerly,
384
385
      use_keras_compile_fit=FLAGS.use_keras_compile_fit,
      custom_callbacks=custom_callbacks)
386

387
  if FLAGS.model_export_path:
388
389
390
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
391
    model_saving_utils.export_bert_model(
392
393
394
        FLAGS.model_export_path,
        model=trained_model,
        restore_model_using_load_weights=FLAGS.use_keras_compile_fit)
395
396
  return trained_model

397
398
399

def main(_):
  # Users should always run this script under TF 2.x
400

401
402
403
404
405
406
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'

407
408
409
410
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
411
  max_seq_length = input_meta_data['max_seq_length']
Hongkun Yu's avatar
Hongkun Yu committed
412
  train_input_fn = get_dataset_fn(
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
413
      FLAGS.train_data_path,
Hongkun Yu's avatar
Hongkun Yu committed
414
415
416
417
      max_seq_length,
      FLAGS.train_batch_size,
      is_training=True)
  eval_input_fn = get_dataset_fn(
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
418
      FLAGS.eval_data_path,
Hongkun Yu's avatar
Hongkun Yu committed
419
420
421
422
      max_seq_length,
      FLAGS.eval_batch_size,
      is_training=False)

423
424
425
  bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
  run_bert(strategy, input_meta_data, bert_config, train_input_fn,
           eval_input_fn)
426
427
428
429
430


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('input_meta_data_path')
431
  flags.mark_flag_as_required('model_dir')
432
  app.run(main)