"vscode:/vscode.git/clone" did not exist on "23cc66f7b65f885969d4608fd4964e0ba98fb7f5"
README.md 2.82 KB
Newer Older
1
2
3
4
# MNIST in TensorFlow

This directory builds a convolutional neural net to classify the [MNIST
dataset](http://yann.lecun.com/exdb/mnist/) using the
Neal Wu's avatar
Neal Wu committed
5
[tf.data](https://www.tensorflow.org/api_docs/python/tf/data),
6
7
8
9
10
11
12
13
[tf.estimator.Estimator](https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator),
and
[tf.layers](https://www.tensorflow.org/api_docs/python/tf/layers)
APIs.


## Setup

14
To begin, you'll simply need the latest version of TensorFlow installed.
Neal Wu's avatar
Neal Wu committed
15
First make sure you've [added the models folder to your Python path](/official/README.md#running-the-models).
16

17
18
19
20
21
22
23
24
Then to train the model, run the following:

```
python mnist.py
```

The model will begin training and will automatically evaluate itself on the
validation data.
25

Asim Shankar's avatar
Asim Shankar committed
26
Illustrative unit tests and benchmarks can be run with:
Asim Shankar's avatar
Asim Shankar committed
27
28
29
30
31
32

```
python mnist_test.py
python mnist_test.py --benchmarks=.
```

33
34
35
36
37
## Exporting the model

You can export the model into Tensorflow [SavedModel](https://www.tensorflow.org/programmers_guide/saved_model) format by using the argument `--export_dir`:

```
38
python mnist.py --export_dir /tmp/mnist_saved_model
39
40
41
42
43
44
45
46
```

The SavedModel will be saved in a timestamped directory under `/tmp/mnist_saved_model/` (e.g. `/tmp/mnist_saved_model/1513630966/`).

**Getting predictions with SavedModel**
Use [`saved_model_cli`](https://www.tensorflow.org/programmers_guide/saved_model#cli_to_inspect_and_execute_savedmodel) to inspect and execute the SavedModel.

```
47
saved_model_cli run --dir /tmp/mnist_saved_model/TIMESTAMP --tag_set serve --signature_def classify --inputs image=examples.npy
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
```

`examples.npy` contains the data from `example5.png` and `example3.png` in a numpy array, in that order. The array values are normalized to values between 0 and 1.

The output should look similar to below:
```
Result for output key classes:
[5 3]
Result for output key probabilities:
[[  1.53558474e-07   1.95694142e-13   1.31193523e-09   5.47467265e-03
    5.85711526e-22   9.94520664e-01   3.48423509e-06   2.65365645e-17
    9.78631419e-07   3.15522470e-08]
 [  1.22413359e-04   5.87615965e-08   1.72251271e-06   9.39960718e-01
    3.30306928e-11   2.87386645e-02   2.82353517e-02   8.21146413e-18
    2.52568233e-03   4.15460236e-04]]
```

Asim Shankar's avatar
Asim Shankar committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
## Experimental: Eager Execution

[Eager execution](https://research.googleblog.com/2017/10/eager-execution-imperative-define-by.html)
(an preview feature in TensorFlow 1.5) is an imperative interface to TensorFlow.
The exact same model defined in `mnist.py` can be trained without creating a
TensorFlow graph using:

```
python mnist_eager.py
```

## Experimental: TPU Acceleration

`mnist.py` (and `mnist_eager.py`) demonstrate training a neural network to
classify digits on CPUs and GPUs. `mnist_tpu.py` can be used to train the
same model using TPUs for hardware acceleration. More information in
the [tensorflow/tpu](https://github.com/tensorflow/tpu) repository.