README.md 1.95 KB
Newer Older
1
2
3
4
# MNIST in TensorFlow

This directory builds a convolutional neural net to classify the [MNIST
dataset](http://yann.lecun.com/exdb/mnist/) using the
Neal Wu's avatar
Neal Wu committed
5
[tf.data](https://www.tensorflow.org/api_docs/python/tf/data),
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
[tf.estimator.Estimator](https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator),
and
[tf.layers](https://www.tensorflow.org/api_docs/python/tf/layers)
APIs.


## Setup

To begin, you'll simply need the latest version of TensorFlow installed.
Then to train the model, run the following:

```
python mnist.py
```

The model will begin training and will automatically evaluate itself on the
validation data.
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

## Exporting the model

You can export the model into Tensorflow [SavedModel](https://www.tensorflow.org/programmers_guide/saved_model) format by using the argument `--export_dir`:

```
python mnist.py --export_dir /tmp/mnist_saved_model 
```

The SavedModel will be saved in a timestamped directory under `/tmp/mnist_saved_model/` (e.g. `/tmp/mnist_saved_model/1513630966/`).

**Getting predictions with SavedModel**
Use [`saved_model_cli`](https://www.tensorflow.org/programmers_guide/saved_model#cli_to_inspect_and_execute_savedmodel) to inspect and execute the SavedModel.

```
saved_model_cli run --dir /tmp/mnist_saved_model/TIMESTAMP --tag_set serve --signature_def classify --inputs image_raw=examples.npy
```

`examples.npy` contains the data from `example5.png` and `example3.png` in a numpy array, in that order. The array values are normalized to values between 0 and 1.

The output should look similar to below:
```
Result for output key classes:
[5 3]
Result for output key probabilities:
[[  1.53558474e-07   1.95694142e-13   1.31193523e-09   5.47467265e-03
    5.85711526e-22   9.94520664e-01   3.48423509e-06   2.65365645e-17
    9.78631419e-07   3.15522470e-08]
 [  1.22413359e-04   5.87615965e-08   1.72251271e-06   9.39960718e-01
    3.30306928e-11   2.87386645e-02   2.82353517e-02   8.21146413e-18
    2.52568233e-03   4.15460236e-04]]
```