resnet_ctl_imagenet_benchmark.py 13.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes CTL benchmarks and accuracy tests."""
Hongkun Yu's avatar
Hongkun Yu committed
16
# pylint: disable=line-too-long,g-bad-import-order
17
18
19
20
21
22
23
24
from __future__ import print_function

import os
import time

from absl import flags
import tensorflow as tf

25
26
from official.vision.image_classification.resnet import common
from official.vision.image_classification.resnet import resnet_ctl_imagenet_main
27
from official.benchmark.perfzero_benchmark import PerfZeroBenchmark
28
from official.benchmark import benchmark_wrappers
29
from official.utils.flags import core as flags_core
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77

FLAGS = flags.FLAGS


class CtlBenchmark(PerfZeroBenchmark):
  """Base benchmark class with methods to simplify testing."""

  def __init__(self, output_dir=None, default_flags=None, flag_methods=None):
    self.output_dir = output_dir
    self.default_flags = default_flags or {}
    self.flag_methods = flag_methods or {}
    super(CtlBenchmark, self).__init__(
        output_dir=self.output_dir,
        default_flags=self.default_flags,
        flag_methods=self.flag_methods)

  def _report_benchmark(self,
                        stats,
                        wall_time_sec,
                        top_1_max=None,
                        top_1_min=None,
                        total_batch_size=None,
                        log_steps=None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
56
57
                        warmup=1,
                        start_time_sec=None):
58
59
60
61
62
63
64
65
66
67
    """Report benchmark results by writing to local protobuf file.

    Args:
      stats: dict returned from keras models with known entries.
      wall_time_sec: the during of the benchmark execution in seconds
      top_1_max: highest passing level for top_1 accuracy.
      top_1_min: lowest passing level for top_1 accuracy.
      total_batch_size: Global batch-size.
      log_steps: How often the log was created for stats['step_timestamp_log'].
      warmup: number of entries in stats['step_timestamp_log'] to ignore.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
68
      start_time_sec: the start time of the program in seconds since epoch.
69
70
71
72
    """

    metrics = []
    if 'eval_acc' in stats:
73
74
75
76
77
78
79
80
81
82
83
84
85
      metrics.append({
          'name': 'accuracy_top_1',
          'value': stats['eval_acc'],
          'min_value': top_1_min,
          'max_value': top_1_max
      })
      metrics.append({'name': 'eval_loss', 'value': stats['eval_loss']})

      metrics.append({
          'name': 'top_1_train_accuracy',
          'value': stats['train_acc']
      })
      metrics.append({'name': 'train_loss', 'value': stats['train_loss']})
86
87

    if (warmup and 'step_timestamp_log' in stats and
Ruoxin Sang's avatar
Ruoxin Sang committed
88
89
        len(stats['step_timestamp_log']) > warmup + 1):
      # first entry in the time_log is start of step 0. The rest of the
90
91
      # entries are the end of each step recorded
      time_log = stats['step_timestamp_log']
Will Cromar's avatar
Will Cromar committed
92
93
94
      steps_elapsed = time_log[-1].batch_index - time_log[warmup].batch_index
      time_elapsed = time_log[-1].timestamp - time_log[warmup].timestamp
      examples_per_sec = total_batch_size * (steps_elapsed / time_elapsed)
95
      metrics.append({'name': 'exp_per_second', 'value': examples_per_sec})
96
97

    if 'avg_exp_per_second' in stats:
98
99
100
101
      metrics.append({
          'name': 'avg_exp_per_second',
          'value': stats['avg_exp_per_second']
      })
102

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
103
104
105
106
107
108
    if start_time_sec and 'step_timestamp_log' in stats:
      time_log = stats['step_timestamp_log']
      # time_log[0] is recorded at the beginning of the first step.
      startup_time = time_log[0].timestamp - start_time_sec
      metrics.append({'name': 'startup_time', 'value': startup_time})

109
    flags_str = flags_core.get_nondefault_flags_as_str()
110
111
112
113
114
    self.report_benchmark(
        iters=-1,
        wall_time=wall_time_sec,
        metrics=metrics,
        extras={'flags': flags_str})
115
116
117
118
119
120
121
122
123
124
125
126


class Resnet50CtlAccuracy(CtlBenchmark):
  """Benchmark accuracy tests for ResNet50 in CTL."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
127
128
        constructor forward compatible in case PerfZero provides more named
        arguments before updating the constructor.
129
130
    """

Hongkun Yu's avatar
Hongkun Yu committed
131
    flag_methods = [common.define_keras_flags]
132

133
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    super(Resnet50CtlAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    self._run_and_report_benchmark()

149
150
151
152
153
154
155
156
157
158
159
160
  def benchmark_8_gpu_fp16(self):
    """Test Keras model with eager, 8 GPUs with tf.keras mixed precision."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark()

161
  def benchmark_8_gpu_amp(self):
162
    """Test Keras model with 8 GPUs and mixed precision via graph rewrite."""
163
164
165
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
166
    FLAGS.batch_size = 256 * 8
167
168
169
170
171
172
173
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    self._run_and_report_benchmark()

174
  @benchmark_wrappers.enable_runtime_flags
175
176
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Hongkun Yu's avatar
Hongkun Yu committed
177
    stats = resnet_ctl_imagenet_main.run(flags.FLAGS)
178
179
180
181
182
183
184
185
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50CtlAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=MIN_TOP_1_ACCURACY,
        top_1_max=MAX_TOP_1_ACCURACY,
        total_batch_size=FLAGS.batch_size,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
186
187
        log_steps=100,
        start_time_sec=start_time_sec)
188
189
190
191
192
193
194
195
196

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)


class Resnet50CtlBenchmarkBase(CtlBenchmark):
  """Resnet50 benchmarks."""

  def __init__(self, output_dir=None, default_flags=None):
Hongkun Yu's avatar
Hongkun Yu committed
197
    flag_methods = [common.define_keras_flags]
198
199
200
201
202
203

    super(Resnet50CtlBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags)

204
  @benchmark_wrappers.enable_runtime_flags
205
206
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Hongkun Yu's avatar
Hongkun Yu committed
207
    stats = resnet_ctl_imagenet_main.run(FLAGS)
208
209
210
211
212
213
214
215
216
217
218
    wall_time_sec = time.time() - start_time_sec

    # Number of logged step time entries that are excluded in performance
    # report. We keep results from last 100 batches in this case.
    warmup = (FLAGS.train_steps - 100) // FLAGS.log_steps

    super(Resnet50CtlBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
219
220
        warmup=warmup,
        start_time_sec=start_time_sec)
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

  def benchmark_1_gpu_no_dist_strat(self):
    """Test Keras model with 1 GPU, no distribution strategy."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

  def benchmark_1_gpu(self):
    """Test Keras model with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
237
    FLAGS.distribution_strategy = 'one_device'
238
239
240
241
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

242
243
244
245
246
247
248
249
250
251
252
  def benchmark_1_gpu_fp16(self):
    """Test Keras model with 1 GPU with tf.keras mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.batch_size = 256
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark()

253
254
255
256
257
  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
258
    FLAGS.distribution_strategy = 'one_device'
259
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
260
    FLAGS.batch_size = 256
261
262
263
264
265
266
267
268
269
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
270
    FLAGS.distribution_strategy = 'one_device'
271
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
272
    FLAGS.batch_size = 256
273
274
275
276
277
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

278
279
280
281
282
  def benchmark_1_gpu_eager(self):
    """Test Keras model with 1 GPU in pure eager mode."""
    self._setup()

    FLAGS.num_gpus = 1
283
    FLAGS.distribution_strategy = 'one_device'
284
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_eager')
285
    FLAGS.batch_size = 120
286
    FLAGS.use_tf_function = False
287
    FLAGS.use_tf_while_loop = False
288
    FLAGS.single_l2_loss_op = True
289
290
    self._run_and_report_benchmark()

291
292
293
294
295
296
297
  def benchmark_1_gpu_fp16_eager(self):
    """Test Keras model with 1 GPU with fp16 and pure eager mode."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_eager')
298
    FLAGS.batch_size = 240
299
300
    FLAGS.dtype = 'fp16'
    FLAGS.use_tf_function = False
301
    FLAGS.use_tf_while_loop = False
302
303
304
    FLAGS.single_l2_loss_op = True
    self._run_and_report_benchmark()

305
306
307
308
309
  def benchmark_8_gpu(self):
    """Test Keras model with 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
310
    FLAGS.distribution_strategy = 'mirrored'
311
312
313
314
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    self._run_and_report_benchmark()

315
316
317
318
319
320
321
322
323
324
325
  def benchmark_8_gpu_fp16(self):
    """Test Keras model with 8 GPUs with tf.keras mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark()

Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
326
327
328
329
330
331
  def benchmark_8_gpu_eager(self):
    """Test Keras model with 8 GPUs, eager, fp32."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.use_tf_function = False
332
    FLAGS.use_tf_while_loop = False
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
333
334
335
336
337
338
339
340
341
342
343
344
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_eager')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

  def benchmark_8_gpu_eager_fp16(self):
    """Test Keras model with 8 GPUs, eager, fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.use_tf_function = False
345
    FLAGS.use_tf_while_loop = False
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
346
347
348
349
350
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_eager_fp16')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

351
352
353
354
355
  def benchmark_8_gpu_amp(self):
    """Test Keras model with 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
356
    FLAGS.distribution_strategy = 'mirrored'
357
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
358
    FLAGS.batch_size = 256 * 8  # 8 GPUs
359
360
361
362
363
364
365
366
367
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    self._run_and_report_benchmark()

  def benchmark_xla_8_gpu_amp(self):
    """Test Keras model with XLA and 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
368
    FLAGS.distribution_strategy = 'mirrored'
369
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp')
370
    FLAGS.batch_size = 256 * 8  # 8 GPUs
371
372
373
374
375
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

376
377
  def fill_report_object(self, stats):
    super(Resnet50CtlBenchmarkBase, self).fill_report_object(
378
        stats, total_batch_size=FLAGS.batch_size, log_steps=FLAGS.log_steps)
379
380
381
382
383
384
385
386
387
388


class Resnet50CtlBenchmarkSynth(Resnet50CtlBenchmarkBase):
  """Resnet50 synthetic benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
Ruoxin Sang's avatar
Ruoxin Sang committed
389
    def_flags['steps_per_loop'] = 20
390
391
392
393
394
395
396
397
398
399
400
401
    def_flags['log_steps'] = 10

    super(Resnet50CtlBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


class Resnet50CtlBenchmarkReal(Resnet50CtlBenchmarkBase):
  """Resnet50 real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
Zongwei Zhou's avatar
Zongwei Zhou committed
402
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
403
    def_flags['train_steps'] = 110
Ruoxin Sang's avatar
Ruoxin Sang committed
404
    def_flags['steps_per_loop'] = 20
405
406
407
408
409
    def_flags['log_steps'] = 10

    super(Resnet50CtlBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)

410

411
412
if __name__ == '__main__':
  tf.test.main()