aspp.py 5.02 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Fan Yang's avatar
Fan Yang committed
15
"""Contains definitions of Atrous Spatial Pyramid Pooling (ASPP) decoder."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
17
18
19
20
21
22
23
24

# Import libraries
import tensorflow as tf

from official.vision import keras_cv


@tf.keras.utils.register_keras_serializable(package='Vision')
class ASPP(tf.keras.layers.Layer):
Fan Yang's avatar
Fan Yang committed
25
  """Creates an Atrous Spatial Pyramid Pooling (ASPP) layer."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
26
27
28
29
30

  def __init__(self,
               level,
               dilation_rates,
               num_filters=256,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
31
               pool_kernel_size=None,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
32
33
34
               use_sync_bn=False,
               norm_momentum=0.99,
               norm_epsilon=0.001,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
35
               activation='relu',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
36
37
38
39
40
               dropout_rate=0.0,
               kernel_initializer='VarianceScaling',
               kernel_regularizer=None,
               interpolation='bilinear',
               **kwargs):
Fan Yang's avatar
Fan Yang committed
41
    """Initializes an Atrous Spatial Pyramid Pooling (ASPP) layer.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
42
43

    Args:
Fan Yang's avatar
Fan Yang committed
44
45
46
47
      level: An `int` level to apply ASPP.
      dilation_rates: A `list` of dilation rates.
      num_filters: An `int` number of output filters in ASPP.
      pool_kernel_size: A `list` of [height, width] of pooling kernel size or
Abdullah Rashwan's avatar
Abdullah Rashwan committed
48
49
        None. Pooling size is with respect to original image size, it will be
        scaled down by 2**level. If None, global average pooling is used.
Fan Yang's avatar
Fan Yang committed
50
51
52
53
54
55
56
57
58
59
60
61
62
      use_sync_bn: A `bool`. If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      activation: A `str` activation to be used in ASPP.
      dropout_rate: A `float` rate for dropout regularization.
      kernel_initializer: A `str` name of kernel_initializer for convolutional
        layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default is None.
      interpolation: A `str` of interpolation method. It should be one of
        `bilinear`, `nearest`, `bicubic`, `area`, `lanczos3`, `lanczos5`,
        `gaussian`, or `mitchellcubic`.
      **kwargs: Additional keyword arguments to be passed.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
63
64
65
66
67
68
    """
    super(ASPP, self).__init__(**kwargs)
    self._config_dict = {
        'level': level,
        'dilation_rates': dilation_rates,
        'num_filters': num_filters,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
69
        'pool_kernel_size': pool_kernel_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
70
71
72
        'use_sync_bn': use_sync_bn,
        'norm_momentum': norm_momentum,
        'norm_epsilon': norm_epsilon,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
73
        'activation': activation,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
74
75
76
77
78
79
80
        'dropout_rate': dropout_rate,
        'kernel_initializer': kernel_initializer,
        'kernel_regularizer': kernel_regularizer,
        'interpolation': interpolation,
    }

  def build(self, input_shape):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
81
82
83
84
85
86
    pool_kernel_size = None
    if self._config_dict['pool_kernel_size']:
      pool_kernel_size = [
          int(p_size // 2**self._config_dict['level'])
          for p_size in self._config_dict['pool_kernel_size']
      ]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
87
88
89
    self.aspp = keras_cv.layers.SpatialPyramidPooling(
        output_channels=self._config_dict['num_filters'],
        dilation_rates=self._config_dict['dilation_rates'],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
90
        pool_kernel_size=pool_kernel_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
91
92
93
        use_sync_bn=self._config_dict['use_sync_bn'],
        batchnorm_momentum=self._config_dict['norm_momentum'],
        batchnorm_epsilon=self._config_dict['norm_epsilon'],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
94
        activation=self._config_dict['activation'],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
95
96
97
98
99
100
        dropout=self._config_dict['dropout_rate'],
        kernel_initializer=self._config_dict['kernel_initializer'],
        kernel_regularizer=self._config_dict['kernel_regularizer'],
        interpolation=self._config_dict['interpolation'])

  def call(self, inputs):
Fan Yang's avatar
Fan Yang committed
101
    """Calls the Atrous Spatial Pyramid Pooling (ASPP) layer on an input.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
102

Fan Yang's avatar
Fan Yang committed
103
    The output of ASPP will be a dict of {`level`, `tf.Tensor`} even if only one
Abdullah Rashwan's avatar
Abdullah Rashwan committed
104
    level is present. Hence, this will be compatible with the rest of the
Fan Yang's avatar
Fan Yang committed
105
    segmentation model interfaces.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
106
107

    Args:
Fan Yang's avatar
Fan Yang committed
108
109
110
111
112
      inputs: A `dict` of `tf.Tensor` where
        - key: A `str` of the level of the multilevel feature maps.
        - values: A `tf.Tensor` of shape [batch, height_l, width_l,
          filter_size].

Abdullah Rashwan's avatar
Abdullah Rashwan committed
113
    Returns:
Fan Yang's avatar
Fan Yang committed
114
115
116
      A `dict` of `tf.Tensor` where
        - key: A `str` of the level of the multilevel feature maps.
        - values: A `tf.Tensor` of output of ASPP module.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
117
118
119
120
121
122
123
124
125
126
127
128
    """
    outputs = {}
    level = str(self._config_dict['level'])
    outputs[level] = self.aspp(inputs[level])
    return outputs

  def get_config(self):
    return self._config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)