# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains definitions of Atrous Spatial Pyramid Pooling (ASPP) decoder.""" # Import libraries import tensorflow as tf from official.vision import keras_cv @tf.keras.utils.register_keras_serializable(package='Vision') class ASPP(tf.keras.layers.Layer): """Creates an Atrous Spatial Pyramid Pooling (ASPP) layer.""" def __init__(self, level, dilation_rates, num_filters=256, pool_kernel_size=None, use_sync_bn=False, norm_momentum=0.99, norm_epsilon=0.001, activation='relu', dropout_rate=0.0, kernel_initializer='VarianceScaling', kernel_regularizer=None, interpolation='bilinear', **kwargs): """Initializes an Atrous Spatial Pyramid Pooling (ASPP) layer. Args: level: An `int` level to apply ASPP. dilation_rates: A `list` of dilation rates. num_filters: An `int` number of output filters in ASPP. pool_kernel_size: A `list` of [height, width] of pooling kernel size or None. Pooling size is with respect to original image size, it will be scaled down by 2**level. If None, global average pooling is used. use_sync_bn: A `bool`. If True, use synchronized batch normalization. norm_momentum: A `float` of normalization momentum for the moving average. norm_epsilon: A `float` added to variance to avoid dividing by zero. activation: A `str` activation to be used in ASPP. dropout_rate: A `float` rate for dropout regularization. kernel_initializer: A `str` name of kernel_initializer for convolutional layers. kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D. Default is None. interpolation: A `str` of interpolation method. It should be one of `bilinear`, `nearest`, `bicubic`, `area`, `lanczos3`, `lanczos5`, `gaussian`, or `mitchellcubic`. **kwargs: Additional keyword arguments to be passed. """ super(ASPP, self).__init__(**kwargs) self._config_dict = { 'level': level, 'dilation_rates': dilation_rates, 'num_filters': num_filters, 'pool_kernel_size': pool_kernel_size, 'use_sync_bn': use_sync_bn, 'norm_momentum': norm_momentum, 'norm_epsilon': norm_epsilon, 'activation': activation, 'dropout_rate': dropout_rate, 'kernel_initializer': kernel_initializer, 'kernel_regularizer': kernel_regularizer, 'interpolation': interpolation, } def build(self, input_shape): pool_kernel_size = None if self._config_dict['pool_kernel_size']: pool_kernel_size = [ int(p_size // 2**self._config_dict['level']) for p_size in self._config_dict['pool_kernel_size'] ] self.aspp = keras_cv.layers.SpatialPyramidPooling( output_channels=self._config_dict['num_filters'], dilation_rates=self._config_dict['dilation_rates'], pool_kernel_size=pool_kernel_size, use_sync_bn=self._config_dict['use_sync_bn'], batchnorm_momentum=self._config_dict['norm_momentum'], batchnorm_epsilon=self._config_dict['norm_epsilon'], activation=self._config_dict['activation'], dropout=self._config_dict['dropout_rate'], kernel_initializer=self._config_dict['kernel_initializer'], kernel_regularizer=self._config_dict['kernel_regularizer'], interpolation=self._config_dict['interpolation']) def call(self, inputs): """Calls the Atrous Spatial Pyramid Pooling (ASPP) layer on an input. The output of ASPP will be a dict of {`level`, `tf.Tensor`} even if only one level is present. Hence, this will be compatible with the rest of the segmentation model interfaces. Args: inputs: A `dict` of `tf.Tensor` where - key: A `str` of the level of the multilevel feature maps. - values: A `tf.Tensor` of shape [batch, height_l, width_l, filter_size]. Returns: A `dict` of `tf.Tensor` where - key: A `str` of the level of the multilevel feature maps. - values: A `tf.Tensor` of output of ASPP module. """ outputs = {} level = str(self._config_dict['level']) outputs[level] = self.aspp(inputs[level]) return outputs def get_config(self): return self._config_dict @classmethod def from_config(cls, config, custom_objects=None): return cls(**config)