train_image_classifier.py 20.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Generic training script that trains a model using a given dataset."""
16
17
18
19
20
21

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
22
23
from tensorflow.contrib import quantize as contrib_quantize
from tensorflow.contrib import slim as contrib_slim
24

25
26
27
28
from datasets import dataset_factory
from deployment import model_deploy
from nets import nets_factory
from preprocessing import preprocessing_factory
29

30
slim = contrib_slim
31
32
33
34
35
36
37

tf.app.flags.DEFINE_string(
    'master', '', 'The address of the TensorFlow master to use.')

tf.app.flags.DEFINE_string(
    'train_dir', '/tmp/tfmodel/',
    'Directory where checkpoints and event logs are written to.')
38
39
40
41
tf.app.flags.DEFINE_float(
    'warmup_epochs', 0,
    'Linearly warmup learning rate from 0 to learning_rate over this '
    'many epochs.')
42
43

tf.app.flags.DEFINE_integer('num_clones', 1,
44
45
46
47
                            'Number of model clones to deploy. Note For '
                            'historical reasons loss from all clones averaged '
                            'out and learning rate decay happen per clone '
                            'epochs')
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

tf.app.flags.DEFINE_boolean('clone_on_cpu', False,
                            'Use CPUs to deploy clones.')

tf.app.flags.DEFINE_integer('worker_replicas', 1, 'Number of worker replicas.')

tf.app.flags.DEFINE_integer(
    'num_ps_tasks', 0,
    'The number of parameter servers. If the value is 0, then the parameters '
    'are handled locally by the worker.')

tf.app.flags.DEFINE_integer(
    'num_readers', 4,
    'The number of parallel readers that read data from the dataset.')

tf.app.flags.DEFINE_integer(
    'num_preprocessing_threads', 4,
    'The number of threads used to create the batches.')

tf.app.flags.DEFINE_integer(
68
    'log_every_n_steps', 10,
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    'The frequency with which logs are print.')

tf.app.flags.DEFINE_integer(
    'save_summaries_secs', 600,
    'The frequency with which summaries are saved, in seconds.')

tf.app.flags.DEFINE_integer(
    'save_interval_secs', 600,
    'The frequency with which the model is saved, in seconds.')

tf.app.flags.DEFINE_integer(
    'task', 0, 'Task id of the replica running the training.')

######################
# Optimization Flags #
######################

tf.app.flags.DEFINE_float(
    'weight_decay', 0.00004, 'The weight decay on the model weights.')

tf.app.flags.DEFINE_string(
    'optimizer', 'rmsprop',
    'The name of the optimizer, one of "adadelta", "adagrad", "adam",'
    '"ftrl", "momentum", "sgd" or "rmsprop".')

tf.app.flags.DEFINE_float(
    'adadelta_rho', 0.95,
    'The decay rate for adadelta.')

tf.app.flags.DEFINE_float(
    'adagrad_initial_accumulator_value', 0.1,
    'Starting value for the AdaGrad accumulators.')

tf.app.flags.DEFINE_float(
    'adam_beta1', 0.9,
    'The exponential decay rate for the 1st moment estimates.')

tf.app.flags.DEFINE_float(
    'adam_beta2', 0.999,
    'The exponential decay rate for the 2nd moment estimates.')

tf.app.flags.DEFINE_float('opt_epsilon', 1.0, 'Epsilon term for the optimizer.')

tf.app.flags.DEFINE_float('ftrl_learning_rate_power', -0.5,
                          'The learning rate power.')

tf.app.flags.DEFINE_float(
    'ftrl_initial_accumulator_value', 0.1,
    'Starting value for the FTRL accumulators.')

tf.app.flags.DEFINE_float(
    'ftrl_l1', 0.0, 'The FTRL l1 regularization strength.')

tf.app.flags.DEFINE_float(
    'ftrl_l2', 0.0, 'The FTRL l2 regularization strength.')

tf.app.flags.DEFINE_float(
    'momentum', 0.9,
    'The momentum for the MomentumOptimizer and RMSPropOptimizer.')

derekjchow's avatar
derekjchow committed
129
130
tf.app.flags.DEFINE_float('rmsprop_momentum', 0.9, 'Momentum.')

131
132
tf.app.flags.DEFINE_float('rmsprop_decay', 0.9, 'Decay term for RMSProp.')

133
134
135
136
137
tf.app.flags.DEFINE_integer(
    'quantize_delay', -1,
    'Number of steps to start quantized training. Set to -1 would disable '
    'quantized training.')

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#######################
# Learning Rate Flags #
#######################

tf.app.flags.DEFINE_string(
    'learning_rate_decay_type',
    'exponential',
    'Specifies how the learning rate is decayed. One of "fixed", "exponential",'
    ' or "polynomial"')

tf.app.flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')

tf.app.flags.DEFINE_float(
    'end_learning_rate', 0.0001,
    'The minimal end learning rate used by a polynomial decay learning rate.')

tf.app.flags.DEFINE_float(
    'label_smoothing', 0.0, 'The amount of label smoothing.')

tf.app.flags.DEFINE_float(
    'learning_rate_decay_factor', 0.94, 'Learning rate decay factor.')

tf.app.flags.DEFINE_float(
    'num_epochs_per_decay', 2.0,
162
163
164
165
    'Number of epochs after which learning rate decays. Note: this flag counts '
    'epochs per clone but aggregates per sync replicas. So 1.0 means that '
    'each clone will go over full epoch individually, but replicas will go '
    'once across all replicas.')
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

tf.app.flags.DEFINE_bool(
    'sync_replicas', False,
    'Whether or not to synchronize the replicas during training.')

tf.app.flags.DEFINE_integer(
    'replicas_to_aggregate', 1,
    'The Number of gradients to collect before updating params.')

tf.app.flags.DEFINE_float(
    'moving_average_decay', None,
    'The decay to use for the moving average.'
    'If left as None, then moving averages are not used.')

#######################
# Dataset Flags #
#######################

tf.app.flags.DEFINE_string(
    'dataset_name', 'imagenet', 'The name of the dataset to load.')

tf.app.flags.DEFINE_string(
    'dataset_split_name', 'train', 'The name of the train/test split.')

tf.app.flags.DEFINE_string(
    'dataset_dir', None, 'The directory where the dataset files are stored.')

tf.app.flags.DEFINE_integer(
    'labels_offset', 0,
    'An offset for the labels in the dataset. This flag is primarily used to '
    'evaluate the VGG and ResNet architectures which do not use a background '
    'class for the ImageNet dataset.')

tf.app.flags.DEFINE_string(
    'model_name', 'inception_v3', 'The name of the architecture to train.')

tf.app.flags.DEFINE_string(
    'preprocessing_name', None, 'The name of the preprocessing to use. If left '
    'as `None`, then the model_name flag is used.')

tf.app.flags.DEFINE_integer(
    'batch_size', 32, 'The number of samples in each batch.')

tf.app.flags.DEFINE_integer(
    'train_image_size', None, 'Train image size')

tf.app.flags.DEFINE_integer('max_number_of_steps', None,
                            'The maximum number of training steps.')

215
216
217
tf.app.flags.DEFINE_bool('use_grayscale', False,
                         'Whether to convert input images to grayscale.')

218
219
220
221
222
223
224
225
226
227
#####################
# Fine-Tuning Flags #
#####################

tf.app.flags.DEFINE_string(
    'checkpoint_path', None,
    'The path to a checkpoint from which to fine-tune.')

tf.app.flags.DEFINE_string(
    'checkpoint_exclude_scopes', None,
228
    'Comma-separated list of scopes of variables to exclude when restoring '
229
230
    'from a checkpoint.')

231
232
233
234
235
236
237
238
239
tf.app.flags.DEFINE_string(
    'trainable_scopes', None,
    'Comma-separated list of scopes to filter the set of variables to train.'
    'By default, None would train all the variables.')

tf.app.flags.DEFINE_boolean(
    'ignore_missing_vars', False,
    'When restoring a checkpoint would ignore missing variables.')

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
FLAGS = tf.app.flags.FLAGS


def _configure_learning_rate(num_samples_per_epoch, global_step):
  """Configures the learning rate.

  Args:
    num_samples_per_epoch: The number of samples in each epoch of training.
    global_step: The global_step tensor.

  Returns:
    A `Tensor` representing the learning rate.

  Raises:
    ValueError: if
  """
256
257
258
  # Note: when num_clones is > 1, this will actually have each clone to go
  # over each epoch FLAGS.num_epochs_per_decay times. This is different
  # behavior from sync replicas and is expected to produce different results.
259
  steps_per_epoch = num_samples_per_epoch / FLAGS.batch_size
260
  if FLAGS.sync_replicas:
261
262
263
    steps_per_epoch /= FLAGS.replicas_to_aggregate

  decay_steps = int(steps_per_epoch * FLAGS.num_epochs_per_decay)
264
265

  if FLAGS.learning_rate_decay_type == 'exponential':
266
267
268
269
270
271
272
    learning_rate = tf.train.exponential_decay(
        FLAGS.learning_rate,
        global_step,
        decay_steps,
        FLAGS.learning_rate_decay_factor,
        staircase=True,
        name='exponential_decay_learning_rate')
273
  elif FLAGS.learning_rate_decay_type == 'fixed':
274
    learning_rate = tf.constant(FLAGS.learning_rate, name='fixed_learning_rate')
275
  elif FLAGS.learning_rate_decay_type == 'polynomial':
276
277
278
279
280
281
282
283
    learning_rate = tf.train.polynomial_decay(
        FLAGS.learning_rate,
        global_step,
        decay_steps,
        FLAGS.end_learning_rate,
        power=1.0,
        cycle=False,
        name='polynomial_decay_learning_rate')
284
  else:
285
    raise ValueError('learning_rate_decay_type [%s] was not recognized' %
286
287
                     FLAGS.learning_rate_decay_type)

288
289
290
291
292
293
294
  if FLAGS.warmup_epochs:
    warmup_lr = (
        FLAGS.learning_rate * tf.cast(global_step, tf.float32) /
        (steps_per_epoch * FLAGS.warmup_epochs))
    learning_rate = tf.minimum(warmup_lr, learning_rate)
  return learning_rate

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

def _configure_optimizer(learning_rate):
  """Configures the optimizer used for training.

  Args:
    learning_rate: A scalar or `Tensor` learning rate.

  Returns:
    An instance of an optimizer.

  Raises:
    ValueError: if FLAGS.optimizer is not recognized.
  """
  if FLAGS.optimizer == 'adadelta':
    optimizer = tf.train.AdadeltaOptimizer(
        learning_rate,
        rho=FLAGS.adadelta_rho,
        epsilon=FLAGS.opt_epsilon)
  elif FLAGS.optimizer == 'adagrad':
    optimizer = tf.train.AdagradOptimizer(
        learning_rate,
        initial_accumulator_value=FLAGS.adagrad_initial_accumulator_value)
  elif FLAGS.optimizer == 'adam':
    optimizer = tf.train.AdamOptimizer(
        learning_rate,
        beta1=FLAGS.adam_beta1,
        beta2=FLAGS.adam_beta2,
        epsilon=FLAGS.opt_epsilon)
  elif FLAGS.optimizer == 'ftrl':
    optimizer = tf.train.FtrlOptimizer(
        learning_rate,
        learning_rate_power=FLAGS.ftrl_learning_rate_power,
        initial_accumulator_value=FLAGS.ftrl_initial_accumulator_value,
        l1_regularization_strength=FLAGS.ftrl_l1,
        l2_regularization_strength=FLAGS.ftrl_l2)
  elif FLAGS.optimizer == 'momentum':
    optimizer = tf.train.MomentumOptimizer(
        learning_rate,
        momentum=FLAGS.momentum,
        name='Momentum')
  elif FLAGS.optimizer == 'rmsprop':
    optimizer = tf.train.RMSPropOptimizer(
        learning_rate,
        decay=FLAGS.rmsprop_decay,
derekjchow's avatar
derekjchow committed
339
        momentum=FLAGS.rmsprop_momentum,
340
341
342
343
        epsilon=FLAGS.opt_epsilon)
  elif FLAGS.optimizer == 'sgd':
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)
  else:
344
    raise ValueError('Optimizer [%s] was not recognized' % FLAGS.optimizer)
345
346
  return optimizer

derekjchow's avatar
derekjchow committed
347

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
def _get_init_fn():
  """Returns a function run by the chief worker to warm-start the training.

  Note that the init_fn is only run when initializing the model during the very
  first global step.

  Returns:
    An init function run by the supervisor.
  """
  if FLAGS.checkpoint_path is None:
    return None

  # Warn the user if a checkpoint exists in the train_dir. Then we'll be
  # ignoring the checkpoint anyway.
  if tf.train.latest_checkpoint(FLAGS.train_dir):
    tf.logging.info(
        'Ignoring --checkpoint_path because a checkpoint already exists in %s'
        % FLAGS.train_dir)
    return None

  exclusions = []
  if FLAGS.checkpoint_exclude_scopes:
    exclusions = [scope.strip()
                  for scope in FLAGS.checkpoint_exclude_scopes.split(',')]

  # TODO(sguada) variables.filter_variables()
  variables_to_restore = []
  for var in slim.get_model_variables():
    for exclusion in exclusions:
      if var.op.name.startswith(exclusion):
        break
379
    else:
380
381
      variables_to_restore.append(var)

382
383
384
385
386
387
388
  if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
    checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
  else:
    checkpoint_path = FLAGS.checkpoint_path

  tf.logging.info('Fine-tuning from %s' % checkpoint_path)

389
  return slim.assign_from_checkpoint_fn(
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
      checkpoint_path,
      variables_to_restore,
      ignore_missing_vars=FLAGS.ignore_missing_vars)


def _get_variables_to_train():
  """Returns a list of variables to train.

  Returns:
    A list of variables to train by the optimizer.
  """
  if FLAGS.trainable_scopes is None:
    return tf.trainable_variables()
  else:
    scopes = [scope.strip() for scope in FLAGS.trainable_scopes.split(',')]

  variables_to_train = []
  for scope in scopes:
    variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
    variables_to_train.extend(variables)
  return variables_to_train
411
412
413
414
415
416


def main(_):
  if not FLAGS.dataset_dir:
    raise ValueError('You must supply the dataset directory with --dataset_dir')

417
  tf.logging.set_verbosity(tf.logging.INFO)
418
  with tf.Graph().as_default():
419
420
421
    #######################
    # Config model_deploy #
    #######################
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    deploy_config = model_deploy.DeploymentConfig(
        num_clones=FLAGS.num_clones,
        clone_on_cpu=FLAGS.clone_on_cpu,
        replica_id=FLAGS.task,
        num_replicas=FLAGS.worker_replicas,
        num_ps_tasks=FLAGS.num_ps_tasks)

    # Create global_step
    with tf.device(deploy_config.variables_device()):
      global_step = slim.create_global_step()

    ######################
    # Select the dataset #
    ######################
    dataset = dataset_factory.get_dataset(
        FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)

439
    ######################
440
    # Select the network #
441
    ######################
442
    network_fn = nets_factory.get_network_fn(
443
444
445
446
447
448
449
450
451
452
453
        FLAGS.model_name,
        num_classes=(dataset.num_classes - FLAGS.labels_offset),
        weight_decay=FLAGS.weight_decay,
        is_training=True)

    #####################################
    # Select the preprocessing function #
    #####################################
    preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
    image_preprocessing_fn = preprocessing_factory.get_preprocessing(
        preprocessing_name,
454
455
        is_training=True,
        use_grayscale=FLAGS.use_grayscale)
456
457
458
459
460
461
462
463
464
465
466
467
468

    ##############################################################
    # Create a dataset provider that loads data from the dataset #
    ##############################################################
    with tf.device(deploy_config.inputs_device()):
      provider = slim.dataset_data_provider.DatasetDataProvider(
          dataset,
          num_readers=FLAGS.num_readers,
          common_queue_capacity=20 * FLAGS.batch_size,
          common_queue_min=10 * FLAGS.batch_size)
      [image, label] = provider.get(['image', 'label'])
      label -= FLAGS.labels_offset

469
      train_image_size = FLAGS.train_image_size or network_fn.default_image_size
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

      image = image_preprocessing_fn(image, train_image_size, train_image_size)

      images, labels = tf.train.batch(
          [image, label],
          batch_size=FLAGS.batch_size,
          num_threads=FLAGS.num_preprocessing_threads,
          capacity=5 * FLAGS.batch_size)
      labels = slim.one_hot_encoding(
          labels, dataset.num_classes - FLAGS.labels_offset)
      batch_queue = slim.prefetch_queue.prefetch_queue(
          [images, labels], capacity=2 * deploy_config.num_clones)

    ####################
    # Define the model #
    ####################
    def clone_fn(batch_queue):
487
      """Allows data parallelism by creating multiple clones of network_fn."""
derekjchow's avatar
derekjchow committed
488
      images, labels = batch_queue.dequeue()
489
      logits, end_points = network_fn(images)
490
491
492
493
494

      #############################
      # Specify the loss function #
      #############################
      if 'AuxLogits' in end_points:
derekjchow's avatar
derekjchow committed
495
496
497
498
499
500
        slim.losses.softmax_cross_entropy(
            end_points['AuxLogits'], labels,
            label_smoothing=FLAGS.label_smoothing, weights=0.4,
            scope='aux_loss')
      slim.losses.softmax_cross_entropy(
          logits, labels, label_smoothing=FLAGS.label_smoothing, weights=1.0)
501
      return end_points
502
503
504
505
506
507
508

    # Gather initial summaries.
    summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

    clones = model_deploy.create_clones(deploy_config, clone_fn, [batch_queue])
    first_clone_scope = deploy_config.clone_scope(0)
    # Gather update_ops from the first clone. These contain, for example,
509
    # the updates for the batch_norm variables created by network_fn.
510
511
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)

512
513
514
515
    # Add summaries for end_points.
    end_points = clones[0].outputs
    for end_point in end_points:
      x = end_points[end_point]
516
517
      summaries.add(tf.summary.histogram('activations/' + end_point, x))
      summaries.add(tf.summary.scalar('sparsity/' + end_point,
518
519
                                      tf.nn.zero_fraction(x)))

520
521
    # Add summaries for losses.
    for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
522
      summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))
523
524
525

    # Add summaries for variables.
    for variable in slim.get_model_variables():
526
      summaries.add(tf.summary.histogram(variable.op.name, variable))
527
528
529
530
531
532
533
534
535
536
537

    #################################
    # Configure the moving averages #
    #################################
    if FLAGS.moving_average_decay:
      moving_average_variables = slim.get_model_variables()
      variable_averages = tf.train.ExponentialMovingAverage(
          FLAGS.moving_average_decay, global_step)
    else:
      moving_average_variables, variable_averages = None, None

538
    if FLAGS.quantize_delay >= 0:
539
      contrib_quantize.create_training_graph(quant_delay=FLAGS.quantize_delay)
540

541
542
543
544
545
546
    #########################################
    # Configure the optimization procedure. #
    #########################################
    with tf.device(deploy_config.optimizer_device()):
      learning_rate = _configure_learning_rate(dataset.num_samples, global_step)
      optimizer = _configure_optimizer(learning_rate)
547
      summaries.add(tf.summary.scalar('learning_rate', learning_rate))
548
549
550
551
552
553
554

    if FLAGS.sync_replicas:
      # If sync_replicas is enabled, the averaging will be done in the chief
      # queue runner.
      optimizer = tf.train.SyncReplicasOptimizer(
          opt=optimizer,
          replicas_to_aggregate=FLAGS.replicas_to_aggregate,
derekjchow's avatar
derekjchow committed
555
          total_num_replicas=FLAGS.worker_replicas,
556
          variable_averages=variable_averages,
derekjchow's avatar
derekjchow committed
557
          variables_to_average=moving_average_variables)
558
559
560
561
    elif FLAGS.moving_average_decay:
      # Update ops executed locally by trainer.
      update_ops.append(variable_averages.apply(moving_average_variables))

562
563
564
    # Variables to train.
    variables_to_train = _get_variables_to_train()

565
    #  and returns a train_tensor and summary_op
566
567
568
569
    total_loss, clones_gradients = model_deploy.optimize_clones(
        clones,
        optimizer,
        var_list=variables_to_train)
570
    # Add total_loss to summary.
571
    summaries.add(tf.summary.scalar('total_loss', total_loss))
572
573
574
575
576
577
578

    # Create gradient updates.
    grad_updates = optimizer.apply_gradients(clones_gradients,
                                             global_step=global_step)
    update_ops.append(grad_updates)

    update_op = tf.group(*update_ops)
579
    with tf.control_dependencies([update_op]):
580
      train_tensor = tf.identity(total_loss, name='train_op')
581
582
583
584
585
586
587

    # Add the summaries from the first clone. These contain the summaries
    # created by model_fn and either optimize_clones() or _gather_clone_loss().
    summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
                                       first_clone_scope))

    # Merge all summaries together.
588
    summary_op = tf.summary.merge(list(summaries), name='summary_op')
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

    ###########################
    # Kicks off the training. #
    ###########################
    slim.learning.train(
        train_tensor,
        logdir=FLAGS.train_dir,
        master=FLAGS.master,
        is_chief=(FLAGS.task == 0),
        init_fn=_get_init_fn(),
        summary_op=summary_op,
        number_of_steps=FLAGS.max_number_of_steps,
        log_every_n_steps=FLAGS.log_every_n_steps,
        save_summaries_secs=FLAGS.save_summaries_secs,
        save_interval_secs=FLAGS.save_interval_secs,
604
        sync_optimizer=optimizer if FLAGS.sync_replicas else None)
605
606
607
608


if __name__ == '__main__':
  tf.app.run()