"tests/L0/run_fp16util/__init__.py" did not exist on "e733e78cf5c0ba5cc478fcbaf6eacc10fb9249a7"
train_image_classifier.py 20.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Generic training script that trains a model using a given dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

23
24
25
26
from datasets import dataset_factory
from deployment import model_deploy
from nets import nets_factory
from preprocessing import preprocessing_factory
27
28
29
30
31
32
33
34
35
36
37

slim = tf.contrib.slim

tf.app.flags.DEFINE_string(
    'master', '', 'The address of the TensorFlow master to use.')

tf.app.flags.DEFINE_string(
    'train_dir', '/tmp/tfmodel/',
    'Directory where checkpoints and event logs are written to.')

tf.app.flags.DEFINE_integer('num_clones', 1,
38
39
40
41
                            'Number of model clones to deploy. Note For '
                            'historical reasons loss from all clones averaged '
                            'out and learning rate decay happen per clone '
                            'epochs')
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

tf.app.flags.DEFINE_boolean('clone_on_cpu', False,
                            'Use CPUs to deploy clones.')

tf.app.flags.DEFINE_integer('worker_replicas', 1, 'Number of worker replicas.')

tf.app.flags.DEFINE_integer(
    'num_ps_tasks', 0,
    'The number of parameter servers. If the value is 0, then the parameters '
    'are handled locally by the worker.')

tf.app.flags.DEFINE_integer(
    'num_readers', 4,
    'The number of parallel readers that read data from the dataset.')

tf.app.flags.DEFINE_integer(
    'num_preprocessing_threads', 4,
    'The number of threads used to create the batches.')

tf.app.flags.DEFINE_integer(
62
    'log_every_n_steps', 10,
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    'The frequency with which logs are print.')

tf.app.flags.DEFINE_integer(
    'save_summaries_secs', 600,
    'The frequency with which summaries are saved, in seconds.')

tf.app.flags.DEFINE_integer(
    'save_interval_secs', 600,
    'The frequency with which the model is saved, in seconds.')

tf.app.flags.DEFINE_integer(
    'task', 0, 'Task id of the replica running the training.')

######################
# Optimization Flags #
######################

tf.app.flags.DEFINE_float(
    'weight_decay', 0.00004, 'The weight decay on the model weights.')

tf.app.flags.DEFINE_string(
    'optimizer', 'rmsprop',
    'The name of the optimizer, one of "adadelta", "adagrad", "adam",'
    '"ftrl", "momentum", "sgd" or "rmsprop".')

tf.app.flags.DEFINE_float(
    'adadelta_rho', 0.95,
    'The decay rate for adadelta.')

tf.app.flags.DEFINE_float(
    'adagrad_initial_accumulator_value', 0.1,
    'Starting value for the AdaGrad accumulators.')

tf.app.flags.DEFINE_float(
    'adam_beta1', 0.9,
    'The exponential decay rate for the 1st moment estimates.')

tf.app.flags.DEFINE_float(
    'adam_beta2', 0.999,
    'The exponential decay rate for the 2nd moment estimates.')

tf.app.flags.DEFINE_float('opt_epsilon', 1.0, 'Epsilon term for the optimizer.')

tf.app.flags.DEFINE_float('ftrl_learning_rate_power', -0.5,
                          'The learning rate power.')

tf.app.flags.DEFINE_float(
    'ftrl_initial_accumulator_value', 0.1,
    'Starting value for the FTRL accumulators.')

tf.app.flags.DEFINE_float(
    'ftrl_l1', 0.0, 'The FTRL l1 regularization strength.')

tf.app.flags.DEFINE_float(
    'ftrl_l2', 0.0, 'The FTRL l2 regularization strength.')

tf.app.flags.DEFINE_float(
    'momentum', 0.9,
    'The momentum for the MomentumOptimizer and RMSPropOptimizer.')

derekjchow's avatar
derekjchow committed
123
124
tf.app.flags.DEFINE_float('rmsprop_momentum', 0.9, 'Momentum.')

125
126
tf.app.flags.DEFINE_float('rmsprop_decay', 0.9, 'Decay term for RMSProp.')

127
128
129
130
131
tf.app.flags.DEFINE_integer(
    'quantize_delay', -1,
    'Number of steps to start quantized training. Set to -1 would disable '
    'quantized training.')

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#######################
# Learning Rate Flags #
#######################

tf.app.flags.DEFINE_string(
    'learning_rate_decay_type',
    'exponential',
    'Specifies how the learning rate is decayed. One of "fixed", "exponential",'
    ' or "polynomial"')

tf.app.flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')

tf.app.flags.DEFINE_float(
    'end_learning_rate', 0.0001,
    'The minimal end learning rate used by a polynomial decay learning rate.')

tf.app.flags.DEFINE_float(
    'label_smoothing', 0.0, 'The amount of label smoothing.')

tf.app.flags.DEFINE_float(
    'learning_rate_decay_factor', 0.94, 'Learning rate decay factor.')

tf.app.flags.DEFINE_float(
    'num_epochs_per_decay', 2.0,
156
157
158
159
    'Number of epochs after which learning rate decays. Note: this flag counts '
    'epochs per clone but aggregates per sync replicas. So 1.0 means that '
    'each clone will go over full epoch individually, but replicas will go '
    'once across all replicas.')
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

tf.app.flags.DEFINE_bool(
    'sync_replicas', False,
    'Whether or not to synchronize the replicas during training.')

tf.app.flags.DEFINE_integer(
    'replicas_to_aggregate', 1,
    'The Number of gradients to collect before updating params.')

tf.app.flags.DEFINE_float(
    'moving_average_decay', None,
    'The decay to use for the moving average.'
    'If left as None, then moving averages are not used.')

#######################
# Dataset Flags #
#######################

tf.app.flags.DEFINE_string(
    'dataset_name', 'imagenet', 'The name of the dataset to load.')

tf.app.flags.DEFINE_string(
    'dataset_split_name', 'train', 'The name of the train/test split.')

tf.app.flags.DEFINE_string(
    'dataset_dir', None, 'The directory where the dataset files are stored.')

tf.app.flags.DEFINE_integer(
    'labels_offset', 0,
    'An offset for the labels in the dataset. This flag is primarily used to '
    'evaluate the VGG and ResNet architectures which do not use a background '
    'class for the ImageNet dataset.')

tf.app.flags.DEFINE_string(
    'model_name', 'inception_v3', 'The name of the architecture to train.')

tf.app.flags.DEFINE_string(
    'preprocessing_name', None, 'The name of the preprocessing to use. If left '
    'as `None`, then the model_name flag is used.')

tf.app.flags.DEFINE_integer(
    'batch_size', 32, 'The number of samples in each batch.')

tf.app.flags.DEFINE_integer(
    'train_image_size', None, 'Train image size')

tf.app.flags.DEFINE_integer('max_number_of_steps', None,
                            'The maximum number of training steps.')

209
210
211
tf.app.flags.DEFINE_bool('use_grayscale', False,
                         'Whether to convert input images to grayscale.')

212
213
214
215
216
217
218
219
220
221
#####################
# Fine-Tuning Flags #
#####################

tf.app.flags.DEFINE_string(
    'checkpoint_path', None,
    'The path to a checkpoint from which to fine-tune.')

tf.app.flags.DEFINE_string(
    'checkpoint_exclude_scopes', None,
222
    'Comma-separated list of scopes of variables to exclude when restoring '
223
224
    'from a checkpoint.')

225
226
227
228
229
230
231
232
233
tf.app.flags.DEFINE_string(
    'trainable_scopes', None,
    'Comma-separated list of scopes to filter the set of variables to train.'
    'By default, None would train all the variables.')

tf.app.flags.DEFINE_boolean(
    'ignore_missing_vars', False,
    'When restoring a checkpoint would ignore missing variables.')

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
FLAGS = tf.app.flags.FLAGS


def _configure_learning_rate(num_samples_per_epoch, global_step):
  """Configures the learning rate.

  Args:
    num_samples_per_epoch: The number of samples in each epoch of training.
    global_step: The global_step tensor.

  Returns:
    A `Tensor` representing the learning rate.

  Raises:
    ValueError: if
  """
250
251
252
253
254
255
  # Note: when num_clones is > 1, this will actually have each clone to go
  # over each epoch FLAGS.num_epochs_per_decay times. This is different
  # behavior from sync replicas and is expected to produce different results.
  decay_steps = int(num_samples_per_epoch * FLAGS.num_epochs_per_decay /
                    FLAGS.batch_size)

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
  if FLAGS.sync_replicas:
    decay_steps /= FLAGS.replicas_to_aggregate

  if FLAGS.learning_rate_decay_type == 'exponential':
    return tf.train.exponential_decay(FLAGS.learning_rate,
                                      global_step,
                                      decay_steps,
                                      FLAGS.learning_rate_decay_factor,
                                      staircase=True,
                                      name='exponential_decay_learning_rate')
  elif FLAGS.learning_rate_decay_type == 'fixed':
    return tf.constant(FLAGS.learning_rate, name='fixed_learning_rate')
  elif FLAGS.learning_rate_decay_type == 'polynomial':
    return tf.train.polynomial_decay(FLAGS.learning_rate,
                                     global_step,
                                     decay_steps,
                                     FLAGS.end_learning_rate,
                                     power=1.0,
                                     cycle=False,
                                     name='polynomial_decay_learning_rate')
  else:
277
    raise ValueError('learning_rate_decay_type [%s] was not recognized' %
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
                     FLAGS.learning_rate_decay_type)


def _configure_optimizer(learning_rate):
  """Configures the optimizer used for training.

  Args:
    learning_rate: A scalar or `Tensor` learning rate.

  Returns:
    An instance of an optimizer.

  Raises:
    ValueError: if FLAGS.optimizer is not recognized.
  """
  if FLAGS.optimizer == 'adadelta':
    optimizer = tf.train.AdadeltaOptimizer(
        learning_rate,
        rho=FLAGS.adadelta_rho,
        epsilon=FLAGS.opt_epsilon)
  elif FLAGS.optimizer == 'adagrad':
    optimizer = tf.train.AdagradOptimizer(
        learning_rate,
        initial_accumulator_value=FLAGS.adagrad_initial_accumulator_value)
  elif FLAGS.optimizer == 'adam':
    optimizer = tf.train.AdamOptimizer(
        learning_rate,
        beta1=FLAGS.adam_beta1,
        beta2=FLAGS.adam_beta2,
        epsilon=FLAGS.opt_epsilon)
  elif FLAGS.optimizer == 'ftrl':
    optimizer = tf.train.FtrlOptimizer(
        learning_rate,
        learning_rate_power=FLAGS.ftrl_learning_rate_power,
        initial_accumulator_value=FLAGS.ftrl_initial_accumulator_value,
        l1_regularization_strength=FLAGS.ftrl_l1,
        l2_regularization_strength=FLAGS.ftrl_l2)
  elif FLAGS.optimizer == 'momentum':
    optimizer = tf.train.MomentumOptimizer(
        learning_rate,
        momentum=FLAGS.momentum,
        name='Momentum')
  elif FLAGS.optimizer == 'rmsprop':
    optimizer = tf.train.RMSPropOptimizer(
        learning_rate,
        decay=FLAGS.rmsprop_decay,
derekjchow's avatar
derekjchow committed
324
        momentum=FLAGS.rmsprop_momentum,
325
326
327
328
        epsilon=FLAGS.opt_epsilon)
  elif FLAGS.optimizer == 'sgd':
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)
  else:
329
    raise ValueError('Optimizer [%s] was not recognized' % FLAGS.optimizer)
330
331
  return optimizer

derekjchow's avatar
derekjchow committed
332

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
def _get_init_fn():
  """Returns a function run by the chief worker to warm-start the training.

  Note that the init_fn is only run when initializing the model during the very
  first global step.

  Returns:
    An init function run by the supervisor.
  """
  if FLAGS.checkpoint_path is None:
    return None

  # Warn the user if a checkpoint exists in the train_dir. Then we'll be
  # ignoring the checkpoint anyway.
  if tf.train.latest_checkpoint(FLAGS.train_dir):
    tf.logging.info(
        'Ignoring --checkpoint_path because a checkpoint already exists in %s'
        % FLAGS.train_dir)
    return None

  exclusions = []
  if FLAGS.checkpoint_exclude_scopes:
    exclusions = [scope.strip()
                  for scope in FLAGS.checkpoint_exclude_scopes.split(',')]

  # TODO(sguada) variables.filter_variables()
  variables_to_restore = []
  for var in slim.get_model_variables():
    for exclusion in exclusions:
      if var.op.name.startswith(exclusion):
        break
364
    else:
365
366
      variables_to_restore.append(var)

367
368
369
370
371
372
373
  if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
    checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
  else:
    checkpoint_path = FLAGS.checkpoint_path

  tf.logging.info('Fine-tuning from %s' % checkpoint_path)

374
  return slim.assign_from_checkpoint_fn(
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
      checkpoint_path,
      variables_to_restore,
      ignore_missing_vars=FLAGS.ignore_missing_vars)


def _get_variables_to_train():
  """Returns a list of variables to train.

  Returns:
    A list of variables to train by the optimizer.
  """
  if FLAGS.trainable_scopes is None:
    return tf.trainable_variables()
  else:
    scopes = [scope.strip() for scope in FLAGS.trainable_scopes.split(',')]

  variables_to_train = []
  for scope in scopes:
    variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
    variables_to_train.extend(variables)
  return variables_to_train
396
397
398
399
400
401


def main(_):
  if not FLAGS.dataset_dir:
    raise ValueError('You must supply the dataset directory with --dataset_dir')

402
  tf.logging.set_verbosity(tf.logging.INFO)
403
  with tf.Graph().as_default():
404
405
406
    #######################
    # Config model_deploy #
    #######################
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    deploy_config = model_deploy.DeploymentConfig(
        num_clones=FLAGS.num_clones,
        clone_on_cpu=FLAGS.clone_on_cpu,
        replica_id=FLAGS.task,
        num_replicas=FLAGS.worker_replicas,
        num_ps_tasks=FLAGS.num_ps_tasks)

    # Create global_step
    with tf.device(deploy_config.variables_device()):
      global_step = slim.create_global_step()

    ######################
    # Select the dataset #
    ######################
    dataset = dataset_factory.get_dataset(
        FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)

424
    ######################
425
    # Select the network #
426
    ######################
427
    network_fn = nets_factory.get_network_fn(
428
429
430
431
432
433
434
435
436
437
438
        FLAGS.model_name,
        num_classes=(dataset.num_classes - FLAGS.labels_offset),
        weight_decay=FLAGS.weight_decay,
        is_training=True)

    #####################################
    # Select the preprocessing function #
    #####################################
    preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
    image_preprocessing_fn = preprocessing_factory.get_preprocessing(
        preprocessing_name,
439
440
        is_training=True,
        use_grayscale=FLAGS.use_grayscale)
441
442
443
444
445
446
447
448
449
450
451
452
453

    ##############################################################
    # Create a dataset provider that loads data from the dataset #
    ##############################################################
    with tf.device(deploy_config.inputs_device()):
      provider = slim.dataset_data_provider.DatasetDataProvider(
          dataset,
          num_readers=FLAGS.num_readers,
          common_queue_capacity=20 * FLAGS.batch_size,
          common_queue_min=10 * FLAGS.batch_size)
      [image, label] = provider.get(['image', 'label'])
      label -= FLAGS.labels_offset

454
      train_image_size = FLAGS.train_image_size or network_fn.default_image_size
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471

      image = image_preprocessing_fn(image, train_image_size, train_image_size)

      images, labels = tf.train.batch(
          [image, label],
          batch_size=FLAGS.batch_size,
          num_threads=FLAGS.num_preprocessing_threads,
          capacity=5 * FLAGS.batch_size)
      labels = slim.one_hot_encoding(
          labels, dataset.num_classes - FLAGS.labels_offset)
      batch_queue = slim.prefetch_queue.prefetch_queue(
          [images, labels], capacity=2 * deploy_config.num_clones)

    ####################
    # Define the model #
    ####################
    def clone_fn(batch_queue):
472
      """Allows data parallelism by creating multiple clones of network_fn."""
derekjchow's avatar
derekjchow committed
473
      images, labels = batch_queue.dequeue()
474
      logits, end_points = network_fn(images)
475
476
477
478
479

      #############################
      # Specify the loss function #
      #############################
      if 'AuxLogits' in end_points:
derekjchow's avatar
derekjchow committed
480
481
482
483
484
485
        slim.losses.softmax_cross_entropy(
            end_points['AuxLogits'], labels,
            label_smoothing=FLAGS.label_smoothing, weights=0.4,
            scope='aux_loss')
      slim.losses.softmax_cross_entropy(
          logits, labels, label_smoothing=FLAGS.label_smoothing, weights=1.0)
486
      return end_points
487
488
489
490
491
492
493

    # Gather initial summaries.
    summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

    clones = model_deploy.create_clones(deploy_config, clone_fn, [batch_queue])
    first_clone_scope = deploy_config.clone_scope(0)
    # Gather update_ops from the first clone. These contain, for example,
494
    # the updates for the batch_norm variables created by network_fn.
495
496
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)

497
498
499
500
    # Add summaries for end_points.
    end_points = clones[0].outputs
    for end_point in end_points:
      x = end_points[end_point]
501
502
      summaries.add(tf.summary.histogram('activations/' + end_point, x))
      summaries.add(tf.summary.scalar('sparsity/' + end_point,
503
504
                                      tf.nn.zero_fraction(x)))

505
506
    # Add summaries for losses.
    for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
507
      summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))
508
509
510

    # Add summaries for variables.
    for variable in slim.get_model_variables():
511
      summaries.add(tf.summary.histogram(variable.op.name, variable))
512
513
514
515
516
517
518
519
520
521
522

    #################################
    # Configure the moving averages #
    #################################
    if FLAGS.moving_average_decay:
      moving_average_variables = slim.get_model_variables()
      variable_averages = tf.train.ExponentialMovingAverage(
          FLAGS.moving_average_decay, global_step)
    else:
      moving_average_variables, variable_averages = None, None

523
524
525
526
    if FLAGS.quantize_delay >= 0:
      tf.contrib.quantize.create_training_graph(
          quant_delay=FLAGS.quantize_delay)

527
528
529
530
531
532
    #########################################
    # Configure the optimization procedure. #
    #########################################
    with tf.device(deploy_config.optimizer_device()):
      learning_rate = _configure_learning_rate(dataset.num_samples, global_step)
      optimizer = _configure_optimizer(learning_rate)
533
      summaries.add(tf.summary.scalar('learning_rate', learning_rate))
534
535
536
537
538
539
540

    if FLAGS.sync_replicas:
      # If sync_replicas is enabled, the averaging will be done in the chief
      # queue runner.
      optimizer = tf.train.SyncReplicasOptimizer(
          opt=optimizer,
          replicas_to_aggregate=FLAGS.replicas_to_aggregate,
derekjchow's avatar
derekjchow committed
541
          total_num_replicas=FLAGS.worker_replicas,
542
          variable_averages=variable_averages,
derekjchow's avatar
derekjchow committed
543
          variables_to_average=moving_average_variables)
544
545
546
547
    elif FLAGS.moving_average_decay:
      # Update ops executed locally by trainer.
      update_ops.append(variable_averages.apply(moving_average_variables))

548
549
550
    # Variables to train.
    variables_to_train = _get_variables_to_train()

551
    #  and returns a train_tensor and summary_op
552
553
554
555
    total_loss, clones_gradients = model_deploy.optimize_clones(
        clones,
        optimizer,
        var_list=variables_to_train)
556
    # Add total_loss to summary.
557
    summaries.add(tf.summary.scalar('total_loss', total_loss))
558
559
560
561
562
563
564

    # Create gradient updates.
    grad_updates = optimizer.apply_gradients(clones_gradients,
                                             global_step=global_step)
    update_ops.append(grad_updates)

    update_op = tf.group(*update_ops)
565
    with tf.control_dependencies([update_op]):
566
      train_tensor = tf.identity(total_loss, name='train_op')
567
568
569
570
571
572
573

    # Add the summaries from the first clone. These contain the summaries
    # created by model_fn and either optimize_clones() or _gather_clone_loss().
    summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
                                       first_clone_scope))

    # Merge all summaries together.
574
    summary_op = tf.summary.merge(list(summaries), name='summary_op')
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

    ###########################
    # Kicks off the training. #
    ###########################
    slim.learning.train(
        train_tensor,
        logdir=FLAGS.train_dir,
        master=FLAGS.master,
        is_chief=(FLAGS.task == 0),
        init_fn=_get_init_fn(),
        summary_op=summary_op,
        number_of_steps=FLAGS.max_number_of_steps,
        log_every_n_steps=FLAGS.log_every_n_steps,
        save_summaries_secs=FLAGS.save_summaries_secs,
        save_interval_secs=FLAGS.save_interval_secs,
590
        sync_optimizer=optimizer if FLAGS.sync_replicas else None)
591
592
593
594


if __name__ == '__main__':
  tf.app.run()