inception_v2_test.py 16.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for nets.inception_v2."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf
23
from tensorflow.contrib import slim as contrib_slim
24
25
26

from nets import inception

27
slim = contrib_slim
28
29
30
31
32
33
34
35
36


class InceptionV2Test(tf.test.TestCase):

  def testBuildClassificationNetwork(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

37
    inputs = tf.random.uniform((batch_size, height, width, 3))
38
    logits, end_points = inception.inception_v2(inputs, num_classes)
39
40
    self.assertTrue(logits.op.name.startswith(
        'InceptionV2/Logits/SpatialSqueeze'))
41
42
43
44
45
46
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue('Predictions' in end_points)
    self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
                         [batch_size, num_classes])

47
48
49
50
51
  def testBuildPreLogitsNetwork(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = None

52
    inputs = tf.random.uniform((batch_size, height, width, 3))
53
54
55
56
57
58
    net, end_points = inception.inception_v2(inputs, num_classes)
    self.assertTrue(net.op.name.startswith('InceptionV2/Logits/AvgPool'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1024])
    self.assertFalse('Logits' in end_points)
    self.assertFalse('Predictions' in end_points)

59
60
61
62
  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 224, 224

63
    inputs = tf.random.uniform((batch_size, height, width, 3))
64
65
66
67
68
69
70
71
72
    mixed_5c, end_points = inception.inception_v2_base(inputs)
    self.assertTrue(mixed_5c.op.name.startswith('InceptionV2/Mixed_5c'))
    self.assertListEqual(mixed_5c.get_shape().as_list(),
                         [batch_size, 7, 7, 1024])
    expected_endpoints = ['Mixed_3b', 'Mixed_3c', 'Mixed_4a', 'Mixed_4b',
                          'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a',
                          'Mixed_5b', 'Mixed_5c', 'Conv2d_1a_7x7',
                          'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3',
                          'MaxPool_3a_3x3']
73
    self.assertItemsEqual(list(end_points.keys()), expected_endpoints)
74
75
76
77
78
79
80
81
82
83

  def testBuildOnlyUptoFinalEndpoint(self):
    batch_size = 5
    height, width = 224, 224
    endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
                 'Mixed_4a', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e',
                 'Mixed_5a', 'Mixed_5b', 'Mixed_5c']
    for index, endpoint in enumerate(endpoints):
      with tf.Graph().as_default():
84
        inputs = tf.random.uniform((batch_size, height, width, 3))
85
86
87
88
        out_tensor, end_points = inception.inception_v2_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'InceptionV2/' + endpoint))
89
        self.assertItemsEqual(endpoints[:index + 1], list(end_points.keys()))
90
91
92
93
94

  def testBuildAndCheckAllEndPointsUptoMixed5c(self):
    batch_size = 5
    height, width = 224, 224

95
    inputs = tf.random.uniform((batch_size, height, width, 3))
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    _, end_points = inception.inception_v2_base(inputs,
                                                final_endpoint='Mixed_5c')
    endpoints_shapes = {'Mixed_3b': [batch_size, 28, 28, 256],
                        'Mixed_3c': [batch_size, 28, 28, 320],
                        'Mixed_4a': [batch_size, 14, 14, 576],
                        'Mixed_4b': [batch_size, 14, 14, 576],
                        'Mixed_4c': [batch_size, 14, 14, 576],
                        'Mixed_4d': [batch_size, 14, 14, 576],
                        'Mixed_4e': [batch_size, 14, 14, 576],
                        'Mixed_5a': [batch_size, 7, 7, 1024],
                        'Mixed_5b': [batch_size, 7, 7, 1024],
                        'Mixed_5c': [batch_size, 7, 7, 1024],
                        'Conv2d_1a_7x7': [batch_size, 112, 112, 64],
                        'MaxPool_2a_3x3': [batch_size, 56, 56, 64],
                        'Conv2d_2b_1x1': [batch_size, 56, 56, 64],
                        'Conv2d_2c_3x3': [batch_size, 56, 56, 192],
                        'MaxPool_3a_3x3': [batch_size, 28, 28, 192]}
113
114
    self.assertItemsEqual(
        list(endpoints_shapes.keys()), list(end_points.keys()))
115
116
117
118
119
120
121
122
123
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

  def testModelHasExpectedNumberOfParameters(self):
    batch_size = 5
    height, width = 224, 224
124
    inputs = tf.random.uniform((batch_size, height, width, 3))
125
126
127
128
129
130
131
132
133
134
135
    with slim.arg_scope(inception.inception_v2_arg_scope()):
      inception.inception_v2_base(inputs)
    total_params, _ = slim.model_analyzer.analyze_vars(
        slim.get_model_variables())
    self.assertAlmostEqual(10173112, total_params)

  def testBuildEndPointsWithDepthMultiplierLessThanOne(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

136
    inputs = tf.random.uniform((batch_size, height, width, 3))
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    _, end_points = inception.inception_v2(inputs, num_classes)

    endpoint_keys = [key for key in end_points.keys()
                     if key.startswith('Mixed') or key.startswith('Conv')]

    _, end_points_with_multiplier = inception.inception_v2(
        inputs, num_classes, scope='depth_multiplied_net',
        depth_multiplier=0.5)

    for key in endpoint_keys:
      original_depth = end_points[key].get_shape().as_list()[3]
      new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
      self.assertEqual(0.5 * original_depth, new_depth)

  def testBuildEndPointsWithDepthMultiplierGreaterThanOne(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

156
    inputs = tf.random.uniform((batch_size, height, width, 3))
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    _, end_points = inception.inception_v2(inputs, num_classes)

    endpoint_keys = [key for key in end_points.keys()
                     if key.startswith('Mixed') or key.startswith('Conv')]

    _, end_points_with_multiplier = inception.inception_v2(
        inputs, num_classes, scope='depth_multiplied_net',
        depth_multiplier=2.0)

    for key in endpoint_keys:
      original_depth = end_points[key].get_shape().as_list()[3]
      new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
      self.assertEqual(2.0 * original_depth, new_depth)

  def testRaiseValueErrorWithInvalidDepthMultiplier(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

176
    inputs = tf.random.uniform((batch_size, height, width, 3))
177
178
179
180
181
    with self.assertRaises(ValueError):
      _ = inception.inception_v2(inputs, num_classes, depth_multiplier=-0.1)
    with self.assertRaises(ValueError):
      _ = inception.inception_v2(inputs, num_classes, depth_multiplier=0.0)

Derek Chow's avatar
Derek Chow committed
182
183
184
185
  def testBuildEndPointsWithUseSeparableConvolutionFalse(self):
    batch_size = 5
    height, width = 224, 224

186
    inputs = tf.random.uniform((batch_size, height, width, 3))
Derek Chow's avatar
Derek Chow committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    _, end_points = inception.inception_v2_base(inputs)

    endpoint_keys = [
        key for key in end_points.keys()
        if key.startswith('Mixed') or key.startswith('Conv')
    ]

    _, end_points_with_replacement = inception.inception_v2_base(
        inputs, use_separable_conv=False)

    # The endpoint shapes must be equal to the original shape even when the
    # separable convolution is replaced with a normal convolution.
    for key in endpoint_keys:
      original_shape = end_points[key].get_shape().as_list()
      self.assertTrue(key in end_points_with_replacement)
      new_shape = end_points_with_replacement[key].get_shape().as_list()
      self.assertListEqual(original_shape, new_shape)

  def testBuildEndPointsNCHWDataFormat(self):
    batch_size = 5
    height, width = 224, 224

209
    inputs = tf.random.uniform((batch_size, height, width, 3))
Derek Chow's avatar
Derek Chow committed
210
211
212
213
214
215
216
    _, end_points = inception.inception_v2_base(inputs)

    endpoint_keys = [
        key for key in end_points.keys()
        if key.startswith('Mixed') or key.startswith('Conv')
    ]

217
    inputs_in_nchw = tf.random.uniform((batch_size, 3, height, width))
Derek Chow's avatar
Derek Chow committed
218
219
220
221
222
223
224
    _, end_points_with_replacement = inception.inception_v2_base(
        inputs_in_nchw, use_separable_conv=False, data_format='NCHW')

    # With the 'NCHW' data format, all endpoint activations have a transposed
    # shape from the original shape with the 'NHWC' layout.
    for key in endpoint_keys:
      transposed_original_shape = tf.transpose(
225
          a=end_points[key], perm=[0, 3, 1, 2]).get_shape().as_list()
Derek Chow's avatar
Derek Chow committed
226
227
228
229
230
231
232
233
      self.assertTrue(key in end_points_with_replacement)
      new_shape = end_points_with_replacement[key].get_shape().as_list()
      self.assertListEqual(transposed_original_shape, new_shape)

  def testBuildErrorsForDataFormats(self):
    batch_size = 5
    height, width = 224, 224

234
    inputs = tf.random.uniform((batch_size, height, width, 3))
Derek Chow's avatar
Derek Chow committed
235
236
237
238
239
240
241
242
243

    # 'NCWH' data format is not supported.
    with self.assertRaises(ValueError):
      _ = inception.inception_v2_base(inputs, data_format='NCWH')

    # 'NCHW' data format is not supported for separable convolution.
    with self.assertRaises(ValueError):
      _ = inception.inception_v2_base(inputs, data_format='NCHW')

244
245
246
247
248
  def testHalfSizeImages(self):
    batch_size = 5
    height, width = 112, 112
    num_classes = 1000

249
    inputs = tf.random.uniform((batch_size, height, width, 3))
250
251
252
253
254
255
256
257
    logits, end_points = inception.inception_v2(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    pre_pool = end_points['Mixed_5c']
    self.assertListEqual(pre_pool.get_shape().as_list(),
                         [batch_size, 4, 4, 1024])

258
259
260
261
262
  def testBuildBaseNetworkWithoutRootBlock(self):
    batch_size = 5
    height, width = 28, 28
    channels = 192

263
    inputs = tf.random.uniform((batch_size, height, width, channels))
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    _, end_points = inception.inception_v2_base(
        inputs, include_root_block=False)
    endpoints_shapes = {
        'Mixed_3b': [batch_size, 28, 28, 256],
        'Mixed_3c': [batch_size, 28, 28, 320],
        'Mixed_4a': [batch_size, 14, 14, 576],
        'Mixed_4b': [batch_size, 14, 14, 576],
        'Mixed_4c': [batch_size, 14, 14, 576],
        'Mixed_4d': [batch_size, 14, 14, 576],
        'Mixed_4e': [batch_size, 14, 14, 576],
        'Mixed_5a': [batch_size, 7, 7, 1024],
        'Mixed_5b': [batch_size, 7, 7, 1024],
        'Mixed_5c': [batch_size, 7, 7, 1024]
    }
278
279
    self.assertItemsEqual(
        list(endpoints_shapes.keys()), list(end_points.keys()))
280
281
282
283
284
285
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

286
  def testUnknownImageShape(self):
287
    tf.compat.v1.reset_default_graph()
288
289
290
291
292
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
293
294
      inputs = tf.compat.v1.placeholder(
          tf.float32, shape=(batch_size, None, None, 3))
295
296
297
298
299
300
      logits, end_points = inception.inception_v2(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
301
      tf.compat.v1.global_variables_initializer().run()
302
303
304
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])

305
  def testGlobalPoolUnknownImageShape(self):
306
    tf.compat.v1.reset_default_graph()
pkulzc's avatar
pkulzc committed
307
308
    batch_size = 1
    height, width = 250, 300
309
310
311
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
312
313
      inputs = tf.compat.v1.placeholder(
          tf.float32, shape=(batch_size, None, None, 3))
314
315
316
317
318
319
320
      logits, end_points = inception.inception_v2(inputs, num_classes,
                                                  global_pool=True)
      self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
321
      tf.compat.v1.global_variables_initializer().run()
322
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
pkulzc's avatar
pkulzc committed
323
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 10, 1024])
324

325
326
327
328
329
  def testUnknowBatchSize(self):
    batch_size = 1
    height, width = 224, 224
    num_classes = 1000

330
    inputs = tf.compat.v1.placeholder(tf.float32, (None, height, width, 3))
331
332
333
334
    logits, _ = inception.inception_v2(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [None, num_classes])
335
    images = tf.random.uniform((batch_size, height, width, 3))
336
337

    with self.test_session() as sess:
338
      sess.run(tf.compat.v1.global_variables_initializer())
339
340
341
342
343
344
345
346
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEquals(output.shape, (batch_size, num_classes))

  def testEvaluation(self):
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000

347
    eval_inputs = tf.random.uniform((batch_size, height, width, 3))
348
349
    logits, _ = inception.inception_v2(eval_inputs, num_classes,
                                       is_training=False)
350
    predictions = tf.argmax(input=logits, axis=1)
351
352

    with self.test_session() as sess:
353
      sess.run(tf.compat.v1.global_variables_initializer())
354
355
356
357
358
359
360
361
362
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))

  def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000

363
    train_inputs = tf.random.uniform((train_batch_size, height, width, 3))
364
    inception.inception_v2(train_inputs, num_classes)
365
    eval_inputs = tf.random.uniform((eval_batch_size, height, width, 3))
366
    logits, _ = inception.inception_v2(eval_inputs, num_classes, reuse=True)
367
    predictions = tf.argmax(input=logits, axis=1)
368
369

    with self.test_session() as sess:
370
      sess.run(tf.compat.v1.global_variables_initializer())
371
372
373
374
375
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,))

  def testLogitsNotSqueezed(self):
    num_classes = 25
376
    images = tf.random.uniform([1, 224, 224, 3])
377
378
379
380
381
    logits, _ = inception.inception_v2(images,
                                       num_classes=num_classes,
                                       spatial_squeeze=False)

    with self.test_session() as sess:
382
      tf.compat.v1.global_variables_initializer().run()
383
384
385
      logits_out = sess.run(logits)
      self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])

386
387
388
  def testNoBatchNormScaleByDefault(self):
    height, width = 224, 224
    num_classes = 1000
389
    inputs = tf.compat.v1.placeholder(tf.float32, (1, height, width, 3))
390
391
392
    with slim.arg_scope(inception.inception_v2_arg_scope()):
      inception.inception_v2(inputs, num_classes, is_training=False)

393
    self.assertEqual(tf.compat.v1.global_variables('.*/BatchNorm/gamma:0$'), [])
394
395
396
397

  def testBatchNormScale(self):
    height, width = 224, 224
    num_classes = 1000
398
    inputs = tf.compat.v1.placeholder(tf.float32, (1, height, width, 3))
399
400
401
402
403
    with slim.arg_scope(
        inception.inception_v2_arg_scope(batch_norm_scale=True)):
      inception.inception_v2(inputs, num_classes, is_training=False)

    gamma_names = set(
404
405
        v.op.name
        for v in tf.compat.v1.global_variables('.*/BatchNorm/gamma:0$'))
406
    self.assertGreater(len(gamma_names), 0)
407
    for v in tf.compat.v1.global_variables('.*/BatchNorm/moving_mean:0$'):
408
409
      self.assertIn(v.op.name[:-len('moving_mean')] + 'gamma', gamma_names)

410
411
412

if __name__ == '__main__':
  tf.test.main()