inception_v2_test.py 15.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for nets.inception_v2."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf

from nets import inception

slim = tf.contrib.slim


class InceptionV2Test(tf.test.TestCase):

  def testBuildClassificationNetwork(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, end_points = inception.inception_v2(inputs, num_classes)
38
39
    self.assertTrue(logits.op.name.startswith(
        'InceptionV2/Logits/SpatialSqueeze'))
40
41
42
43
44
45
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue('Predictions' in end_points)
    self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
                         [batch_size, num_classes])

46
47
48
49
50
51
52
53
54
55
56
57
  def testBuildPreLogitsNetwork(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = None

    inputs = tf.random_uniform((batch_size, height, width, 3))
    net, end_points = inception.inception_v2(inputs, num_classes)
    self.assertTrue(net.op.name.startswith('InceptionV2/Logits/AvgPool'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1024])
    self.assertFalse('Logits' in end_points)
    self.assertFalse('Predictions' in end_points)

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))
    mixed_5c, end_points = inception.inception_v2_base(inputs)
    self.assertTrue(mixed_5c.op.name.startswith('InceptionV2/Mixed_5c'))
    self.assertListEqual(mixed_5c.get_shape().as_list(),
                         [batch_size, 7, 7, 1024])
    expected_endpoints = ['Mixed_3b', 'Mixed_3c', 'Mixed_4a', 'Mixed_4b',
                          'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a',
                          'Mixed_5b', 'Mixed_5c', 'Conv2d_1a_7x7',
                          'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3',
                          'MaxPool_3a_3x3']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)

  def testBuildOnlyUptoFinalEndpoint(self):
    batch_size = 5
    height, width = 224, 224
    endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
                 'Mixed_4a', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e',
                 'Mixed_5a', 'Mixed_5b', 'Mixed_5c']
    for index, endpoint in enumerate(endpoints):
      with tf.Graph().as_default():
        inputs = tf.random_uniform((batch_size, height, width, 3))
        out_tensor, end_points = inception.inception_v2_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'InceptionV2/' + endpoint))
pkulzc's avatar
pkulzc committed
88
        self.assertItemsEqual(endpoints[:index+1], end_points.keys())
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

  def testBuildAndCheckAllEndPointsUptoMixed5c(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v2_base(inputs,
                                                final_endpoint='Mixed_5c')
    endpoints_shapes = {'Mixed_3b': [batch_size, 28, 28, 256],
                        'Mixed_3c': [batch_size, 28, 28, 320],
                        'Mixed_4a': [batch_size, 14, 14, 576],
                        'Mixed_4b': [batch_size, 14, 14, 576],
                        'Mixed_4c': [batch_size, 14, 14, 576],
                        'Mixed_4d': [batch_size, 14, 14, 576],
                        'Mixed_4e': [batch_size, 14, 14, 576],
                        'Mixed_5a': [batch_size, 7, 7, 1024],
                        'Mixed_5b': [batch_size, 7, 7, 1024],
                        'Mixed_5c': [batch_size, 7, 7, 1024],
                        'Conv2d_1a_7x7': [batch_size, 112, 112, 64],
                        'MaxPool_2a_3x3': [batch_size, 56, 56, 64],
                        'Conv2d_2b_1x1': [batch_size, 56, 56, 64],
                        'Conv2d_2c_3x3': [batch_size, 56, 56, 192],
                        'MaxPool_3a_3x3': [batch_size, 28, 28, 192]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

  def testModelHasExpectedNumberOfParameters(self):
    batch_size = 5
    height, width = 224, 224
    inputs = tf.random_uniform((batch_size, height, width, 3))
    with slim.arg_scope(inception.inception_v2_arg_scope()):
      inception.inception_v2_base(inputs)
    total_params, _ = slim.model_analyzer.analyze_vars(
        slim.get_model_variables())
    self.assertAlmostEqual(10173112, total_params)

  def testBuildEndPointsWithDepthMultiplierLessThanOne(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v2(inputs, num_classes)

    endpoint_keys = [key for key in end_points.keys()
                     if key.startswith('Mixed') or key.startswith('Conv')]

    _, end_points_with_multiplier = inception.inception_v2(
        inputs, num_classes, scope='depth_multiplied_net',
        depth_multiplier=0.5)

    for key in endpoint_keys:
      original_depth = end_points[key].get_shape().as_list()[3]
      new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
      self.assertEqual(0.5 * original_depth, new_depth)

  def testBuildEndPointsWithDepthMultiplierGreaterThanOne(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v2(inputs, num_classes)

    endpoint_keys = [key for key in end_points.keys()
                     if key.startswith('Mixed') or key.startswith('Conv')]

    _, end_points_with_multiplier = inception.inception_v2(
        inputs, num_classes, scope='depth_multiplied_net',
        depth_multiplier=2.0)

    for key in endpoint_keys:
      original_depth = end_points[key].get_shape().as_list()[3]
      new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
      self.assertEqual(2.0 * original_depth, new_depth)

  def testRaiseValueErrorWithInvalidDepthMultiplier(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.random_uniform((batch_size, height, width, 3))
    with self.assertRaises(ValueError):
      _ = inception.inception_v2(inputs, num_classes, depth_multiplier=-0.1)
    with self.assertRaises(ValueError):
      _ = inception.inception_v2(inputs, num_classes, depth_multiplier=0.0)

Derek Chow's avatar
Derek Chow committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
  def testBuildEndPointsWithUseSeparableConvolutionFalse(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v2_base(inputs)

    endpoint_keys = [
        key for key in end_points.keys()
        if key.startswith('Mixed') or key.startswith('Conv')
    ]

    _, end_points_with_replacement = inception.inception_v2_base(
        inputs, use_separable_conv=False)

    # The endpoint shapes must be equal to the original shape even when the
    # separable convolution is replaced with a normal convolution.
    for key in endpoint_keys:
      original_shape = end_points[key].get_shape().as_list()
      self.assertTrue(key in end_points_with_replacement)
      new_shape = end_points_with_replacement[key].get_shape().as_list()
      self.assertListEqual(original_shape, new_shape)

  def testBuildEndPointsNCHWDataFormat(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v2_base(inputs)

    endpoint_keys = [
        key for key in end_points.keys()
        if key.startswith('Mixed') or key.startswith('Conv')
    ]

    inputs_in_nchw = tf.random_uniform((batch_size, 3, height, width))
    _, end_points_with_replacement = inception.inception_v2_base(
        inputs_in_nchw, use_separable_conv=False, data_format='NCHW')

    # With the 'NCHW' data format, all endpoint activations have a transposed
    # shape from the original shape with the 'NHWC' layout.
    for key in endpoint_keys:
      transposed_original_shape = tf.transpose(
          end_points[key], [0, 3, 1, 2]).get_shape().as_list()
      self.assertTrue(key in end_points_with_replacement)
      new_shape = end_points_with_replacement[key].get_shape().as_list()
      self.assertListEqual(transposed_original_shape, new_shape)

  def testBuildErrorsForDataFormats(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))

    # 'NCWH' data format is not supported.
    with self.assertRaises(ValueError):
      _ = inception.inception_v2_base(inputs, data_format='NCWH')

    # 'NCHW' data format is not supported for separable convolution.
    with self.assertRaises(ValueError):
      _ = inception.inception_v2_base(inputs, data_format='NCHW')

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
  def testHalfSizeImages(self):
    batch_size = 5
    height, width = 112, 112
    num_classes = 1000

    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, end_points = inception.inception_v2(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    pre_pool = end_points['Mixed_5c']
    self.assertListEqual(pre_pool.get_shape().as_list(),
                         [batch_size, 4, 4, 1024])

  def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v2(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
270
      tf.global_variables_initializer().run()
271
272
273
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])

274
275
  def testGlobalPoolUnknownImageShape(self):
    tf.reset_default_graph()
pkulzc's avatar
pkulzc committed
276
277
    batch_size = 1
    height, width = 250, 300
278
279
280
281
282
283
284
285
286
287
288
289
290
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v2(inputs, num_classes,
                                                  global_pool=True)
      self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
pkulzc's avatar
pkulzc committed
291
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 10, 1024])
292

293
294
295
296
297
298
299
300
301
302
303
304
305
  def testUnknowBatchSize(self):
    batch_size = 1
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.placeholder(tf.float32, (None, height, width, 3))
    logits, _ = inception.inception_v2(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [None, num_classes])
    images = tf.random_uniform((batch_size, height, width, 3))

    with self.test_session() as sess:
306
      sess.run(tf.global_variables_initializer())
307
308
309
310
311
312
313
314
315
316
317
318
319
320
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEquals(output.shape, (batch_size, num_classes))

  def testEvaluation(self):
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000

    eval_inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, _ = inception.inception_v2(eval_inputs, num_classes,
                                       is_training=False)
    predictions = tf.argmax(logits, 1)

    with self.test_session() as sess:
321
      sess.run(tf.global_variables_initializer())
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))

  def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000

    train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
    inception.inception_v2(train_inputs, num_classes)
    eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
    logits, _ = inception.inception_v2(eval_inputs, num_classes, reuse=True)
    predictions = tf.argmax(logits, 1)

    with self.test_session() as sess:
338
      sess.run(tf.global_variables_initializer())
339
340
341
342
343
344
345
346
347
348
349
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,))

  def testLogitsNotSqueezed(self):
    num_classes = 25
    images = tf.random_uniform([1, 224, 224, 3])
    logits, _ = inception.inception_v2(images,
                                       num_classes=num_classes,
                                       spatial_squeeze=False)

    with self.test_session() as sess:
350
      tf.global_variables_initializer().run()
351
352
353
      logits_out = sess.run(logits)
      self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
  def testNoBatchNormScaleByDefault(self):
    height, width = 224, 224
    num_classes = 1000
    inputs = tf.placeholder(tf.float32, (1, height, width, 3))
    with slim.arg_scope(inception.inception_v2_arg_scope()):
      inception.inception_v2(inputs, num_classes, is_training=False)

    self.assertEqual(tf.global_variables('.*/BatchNorm/gamma:0$'), [])

  def testBatchNormScale(self):
    height, width = 224, 224
    num_classes = 1000
    inputs = tf.placeholder(tf.float32, (1, height, width, 3))
    with slim.arg_scope(
        inception.inception_v2_arg_scope(batch_norm_scale=True)):
      inception.inception_v2(inputs, num_classes, is_training=False)

    gamma_names = set(
        v.op.name for v in tf.global_variables('.*/BatchNorm/gamma:0$'))
    self.assertGreater(len(gamma_names), 0)
    for v in tf.global_variables('.*/BatchNorm/moving_mean:0$'):
      self.assertIn(v.op.name[:-len('moving_mean')] + 'gamma', gamma_names)

377
378
379

if __name__ == '__main__':
  tf.test.main()