README.md 5.13 KB
Newer Older
1
2
3
![TensorFlow Requirement: 1.x](https://img.shields.io/badge/TensorFlow%20Requirement-1.x-brightgreen)
![TensorFlow 2 Not Supported](https://img.shields.io/badge/TensorFlow%202%20Not%20Supported-%E2%9C%95-red.svg)

Reza Mahjourian's avatar
Reza Mahjourian committed
4
5
6
7
8
9
10
11
# vid2depth

**Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints**

Reza Mahjourian, Martin Wicke, Anelia Angelova

CVPR 2018

Reza Mahjourian's avatar
Reza Mahjourian committed
12
Project website: [https://sites.google.com/view/vid2depth](https://sites.google.com/view/vid2depth)
Reza Mahjourian's avatar
Reza Mahjourian committed
13

Reza Mahjourian's avatar
Reza Mahjourian committed
14
ArXiv: [https://arxiv.org/pdf/1802.05522.pdf](https://arxiv.org/pdf/1802.05522.pdf)
Reza Mahjourian's avatar
Reza Mahjourian committed
15
16

<p align="center">
Reza Mahjourian's avatar
Reza Mahjourian committed
17
<a href="https://sites.google.com/view/vid2depth"><img src='https://storage.googleapis.com/vid2depth/media/sample_video_small.gif'></a>
Reza Mahjourian's avatar
Reza Mahjourian committed
18
19
20
</p>

<p align="center">
Reza Mahjourian's avatar
Reza Mahjourian committed
21
<a href="https://sites.google.com/view/vid2depth"><img src='https://storage.googleapis.com/vid2depth/media/approach.png' width=400></a>
Reza Mahjourian's avatar
Reza Mahjourian committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
</p>

## 1. Installation

### Requirements

#### Python Packages

```shell
mkvirtualenv venv  # Optionally create a virtual environment.
pip install absl-py
pip install matplotlib
pip install numpy
pip install scipy
pip install tensorflow
```

#### For building the ICP op (work in progress)

* Bazel: https://bazel.build/

### Download vid2depth

```shell
git clone --depth 1 https://github.com/tensorflow/models.git
```

## 2. Datasets

### Download KITTI dataset (174GB)

```shell
mkdir -p ~/vid2depth/kitti-raw-uncompressed
cd ~/vid2depth/kitti-raw-uncompressed
56
wget https://raw.githubusercontent.com/mrharicot/monodepth/master/utils/kitti_archives_to_download.txt
Reza Mahjourian's avatar
Reza Mahjourian committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
wget -i kitti_archives_to_download.txt
unzip "*.zip"
```

### Download Cityscapes dataset (110GB) (optional)

You will need to register in order to download the data.  Download the following files:

* leftImg8bit_sequence_trainvaltest.zip
* camera_trainvaltest.zip

### Download Bike dataset (17GB) (optional)

```shell
mkdir -p ~/vid2depth/bike-uncompressed
cd ~/vid2depth/bike-uncompressed
wget https://storage.googleapis.com/brain-robotics-data/bike/BikeVideoDataset.tar
tar xvf BikeVideoDataset.tar
```

## 3. Inference

### Download trained model

```shell
mkdir -p ~/vid2depth/trained-model
cd ~/vid2depth/trained-model
wget https://storage.cloud.google.com/vid2depth/model/model-119496.zip
unzip model-119496.zip
```

### Run inference

```shell
cd tensorflow/models/research/vid2depth
python inference.py \
  --kitti_dir ~/vid2depth/kitti-raw-uncompressed \
  --output_dir ~/vid2depth/inference \
Burak's avatar
Burak committed
95
  --kitti_video 2011_09_26/2011_09_26_drive_0009_sync \
Reza Mahjourian's avatar
Reza Mahjourian committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
  --model_ckpt ~/vid2depth/trained-model/model-119496
```

## 4. Training

### Prepare KITTI training sequences

```shell
# Prepare training sequences.
cd tensorflow/models/research/vid2depth
python dataset/gen_data.py \
  --dataset_name kitti_raw_eigen \
  --dataset_dir ~/vid2depth/kitti-raw-uncompressed \
  --data_dir ~/vid2depth/data/kitti_raw_eigen \
  --seq_length 3
```

### Prepare Cityscapes training sequences (optional)

```shell
# Prepare training sequences.
cd tensorflow/models/research/vid2depth
python dataset/gen_data.py \
  --dataset_name cityscapes \
  --dataset_dir ~/vid2depth/cityscapes-uncompressed \
  --data_dir ~/vid2depth/data/cityscapes \
  --seq_length 3
```

### Prepare Bike training sequences (optional)

```shell
# Prepare training sequences.
cd tensorflow/models/research/vid2depth
python dataset/gen_data.py \
  --dataset_name bike \
  --dataset_dir ~/vid2depth/bike-uncompressed \
  --data_dir ~/vid2depth/data/bike \
  --seq_length 3
```

### Compile the ICP op (work in progress)

The ICP op depends on multiple software packages (TensorFlow, Point Cloud
Library, FLANN, Boost, HDF5).  The Bazel build system requires individual BUILD
files for each of these packages.  We have included a partial implementation of
these BUILD files inside the third_party directory.  But they are not ready for
compiling the op.  If you manage to build the op, please let us know so we can
include your contribution.

```shell
cd tensorflow/models/research/vid2depth
bazel build ops:pcl_demo  # Build test program using PCL only.
bazel build ops:icp_op.so
```

For the time being, it is possible to run inference on the pre-trained model and
run training without the icp loss.

### Run training

```shell
# Train
cd tensorflow/models/research/vid2depth
python train.py \
  --data_dir ~/vid2depth/data/kitti_raw_eigen \
  --seq_length 3 \
  --reconstr_weight 0.85 \
  --smooth_weight 0.05 \
  --ssim_weight 0.15 \
  --icp_weight 0 \
  --checkpoint_dir ~/vid2depth/checkpoints
```

## Reference
If you find our work useful in your research please consider citing our paper:

```
@inproceedings{mahjourian2018unsupervised,
  title={Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints},
    author={Mahjourian, Reza and Wicke, Martin and Angelova, Anelia},
    booktitle = {CVPR},
    year={2018}
}
```

## Contact

To ask questions or report issues please open an issue on the tensorflow/models
[issues tracker](https://github.com/tensorflow/models/issues). Please assign
issues to [@rezama](https://github.com/rezama).

## Credits

This implementation is derived from [SfMLearner](https://github.com/tinghuiz/SfMLearner) by [Tinghui Zhou](https://github.com/tinghuiz).