  # vid2depth **Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints** Reza Mahjourian, Martin Wicke, Anelia Angelova CVPR 2018 Project website: [https://sites.google.com/view/vid2depth](https://sites.google.com/view/vid2depth) ArXiv: [https://arxiv.org/pdf/1802.05522.pdf](https://arxiv.org/pdf/1802.05522.pdf)
## 1. Installation ### Requirements #### Python Packages ```shell mkvirtualenv venv # Optionally create a virtual environment. pip install absl-py pip install matplotlib pip install numpy pip install scipy pip install tensorflow ``` #### For building the ICP op (work in progress) * Bazel: https://bazel.build/ ### Download vid2depth ```shell git clone --depth 1 https://github.com/tensorflow/models.git ``` ## 2. Datasets ### Download KITTI dataset (174GB) ```shell mkdir -p ~/vid2depth/kitti-raw-uncompressed cd ~/vid2depth/kitti-raw-uncompressed wget https://raw.githubusercontent.com/mrharicot/monodepth/master/utils/kitti_archives_to_download.txt wget -i kitti_archives_to_download.txt unzip "*.zip" ``` ### Download Cityscapes dataset (110GB) (optional) You will need to register in order to download the data. Download the following files: * leftImg8bit_sequence_trainvaltest.zip * camera_trainvaltest.zip ### Download Bike dataset (17GB) (optional) ```shell mkdir -p ~/vid2depth/bike-uncompressed cd ~/vid2depth/bike-uncompressed wget https://storage.googleapis.com/brain-robotics-data/bike/BikeVideoDataset.tar tar xvf BikeVideoDataset.tar ``` ## 3. Inference ### Download trained model ```shell mkdir -p ~/vid2depth/trained-model cd ~/vid2depth/trained-model wget https://storage.cloud.google.com/vid2depth/model/model-119496.zip unzip model-119496.zip ``` ### Run inference ```shell cd tensorflow/models/research/vid2depth python inference.py \ --kitti_dir ~/vid2depth/kitti-raw-uncompressed \ --output_dir ~/vid2depth/inference \ --kitti_video 2011_09_26/2011_09_26_drive_0009_sync \ --model_ckpt ~/vid2depth/trained-model/model-119496 ``` ## 4. Training ### Prepare KITTI training sequences ```shell # Prepare training sequences. cd tensorflow/models/research/vid2depth python dataset/gen_data.py \ --dataset_name kitti_raw_eigen \ --dataset_dir ~/vid2depth/kitti-raw-uncompressed \ --data_dir ~/vid2depth/data/kitti_raw_eigen \ --seq_length 3 ``` ### Prepare Cityscapes training sequences (optional) ```shell # Prepare training sequences. cd tensorflow/models/research/vid2depth python dataset/gen_data.py \ --dataset_name cityscapes \ --dataset_dir ~/vid2depth/cityscapes-uncompressed \ --data_dir ~/vid2depth/data/cityscapes \ --seq_length 3 ``` ### Prepare Bike training sequences (optional) ```shell # Prepare training sequences. cd tensorflow/models/research/vid2depth python dataset/gen_data.py \ --dataset_name bike \ --dataset_dir ~/vid2depth/bike-uncompressed \ --data_dir ~/vid2depth/data/bike \ --seq_length 3 ``` ### Compile the ICP op (work in progress) The ICP op depends on multiple software packages (TensorFlow, Point Cloud Library, FLANN, Boost, HDF5). The Bazel build system requires individual BUILD files for each of these packages. We have included a partial implementation of these BUILD files inside the third_party directory. But they are not ready for compiling the op. If you manage to build the op, please let us know so we can include your contribution. ```shell cd tensorflow/models/research/vid2depth bazel build ops:pcl_demo # Build test program using PCL only. bazel build ops:icp_op.so ``` For the time being, it is possible to run inference on the pre-trained model and run training without the icp loss. ### Run training ```shell # Train cd tensorflow/models/research/vid2depth python train.py \ --data_dir ~/vid2depth/data/kitti_raw_eigen \ --seq_length 3 \ --reconstr_weight 0.85 \ --smooth_weight 0.05 \ --ssim_weight 0.15 \ --icp_weight 0 \ --checkpoint_dir ~/vid2depth/checkpoints ``` ## Reference If you find our work useful in your research please consider citing our paper: ``` @inproceedings{mahjourian2018unsupervised, title={Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints}, author={Mahjourian, Reza and Wicke, Martin and Angelova, Anelia}, booktitle = {CVPR}, year={2018} } ``` ## Contact To ask questions or report issues please open an issue on the tensorflow/models [issues tracker](https://github.com/tensorflow/models/issues). Please assign issues to [@rezama](https://github.com/rezama). ## Credits This implementation is derived from [SfMLearner](https://github.com/tinghuiz/SfMLearner) by [Tinghui Zhou](https://github.com/tinghuiz).