spatial_transformer.py 7.77 KB
Newer Older
David Dao's avatar
David Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Neal Wu's avatar
Neal Wu committed
15

16
from six.moves import xrange
David Dao's avatar
David Dao committed
17
18
import tensorflow as tf

19

Timur's avatar
Timur committed
20
def transformer(U, theta, out_size, name='SpatialTransformer', **kwargs):
David Dao's avatar
David Dao committed
21
    """Spatial Transformer Layer
22

David Dao's avatar
David Dao committed
23
24
    Implements a spatial transformer layer as described in [1]_.
    Based on [2]_ and edited by David Dao for Tensorflow.
25

David Dao's avatar
David Dao committed
26
27
    Parameters
    ----------
28
    U : float
David Dao's avatar
David Dao committed
29
        The output of a convolutional net should have the
30
31
        shape [num_batch, height, width, num_channels].
    theta: float
David Dao's avatar
David Dao committed
32
33
        The output of the
        localisation network should be [num_batch, 6].
34
35
    out_size: tuple of two ints
        The size of the output of the network (height, width)
Timur's avatar
Timur committed
36

David Dao's avatar
David Dao committed
37
38
39
40
41
42
    References
    ----------
    .. [1]  Spatial Transformer Networks
            Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu
            Submitted on 5 Jun 2015
    .. [2]  https://github.com/skaae/transformer_network/blob/master/transformerlayer.py
43

David Dao's avatar
David Dao committed
44
45
46
47
48
    Notes
    -----
    To initialize the network to the identity transform init
    ``theta`` to :
        identity = np.array([[1., 0., 0.],
49
                             [0., 1., 0.]])
David Dao's avatar
David Dao committed
50
51
        identity = identity.flatten()
        theta = tf.Variable(initial_value=identity)
52

David Dao's avatar
David Dao committed
53
    """
54

David Dao's avatar
David Dao committed
55
56
    def _repeat(x, n_repeats):
        with tf.variable_scope('_repeat'):
57
            rep = tf.transpose(
58
                tf.expand_dims(tf.ones(shape=tf.stack([n_repeats, ])), 1), [1, 0])
David Dao's avatar
David Dao committed
59
            rep = tf.cast(rep, 'int32')
60
61
            x = tf.matmul(tf.reshape(x, (-1, 1)), rep)
            return tf.reshape(x, [-1])
David Dao's avatar
David Dao committed
62

Timur's avatar
Timur committed
63
    def _interpolate(im, x, y, out_size):
David Dao's avatar
David Dao committed
64
65
66
67
68
69
70
71
72
73
74
        with tf.variable_scope('_interpolate'):
            # constants
            num_batch = tf.shape(im)[0]
            height = tf.shape(im)[1]
            width = tf.shape(im)[2]
            channels = tf.shape(im)[3]

            x = tf.cast(x, 'float32')
            y = tf.cast(y, 'float32')
            height_f = tf.cast(height, 'float32')
            width_f = tf.cast(width, 'float32')
Timur's avatar
Timur committed
75
            out_height = out_size[0]
76
            out_width = out_size[1]
David Dao's avatar
David Dao committed
77
78
79
80
81
            zero = tf.zeros([], dtype='int32')
            max_y = tf.cast(tf.shape(im)[1] - 1, 'int32')
            max_x = tf.cast(tf.shape(im)[2] - 1, 'int32')

            # scale indices from [-1, 1] to [0, width/height]
82
            x = (x + 1.0)*(width_f) / 2.0
David Dao's avatar
David Dao committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
            y = (y + 1.0)*(height_f) / 2.0

            # do sampling
            x0 = tf.cast(tf.floor(x), 'int32')
            x1 = x0 + 1
            y0 = tf.cast(tf.floor(y), 'int32')
            y1 = y0 + 1

            x0 = tf.clip_by_value(x0, zero, max_x)
            x1 = tf.clip_by_value(x1, zero, max_x)
            y0 = tf.clip_by_value(y0, zero, max_y)
            y1 = tf.clip_by_value(y1, zero, max_y)
            dim2 = width
            dim1 = width*height
            base = _repeat(tf.range(num_batch)*dim1, out_height*out_width)
            base_y0 = base + y0*dim2
            base_y1 = base + y1*dim2
            idx_a = base_y0 + x0
            idx_b = base_y1 + x0
            idx_c = base_y0 + x1
            idx_d = base_y1 + x1

105
106
            # use indices to lookup pixels in the flat image and restore
            # channels dim
107
            im_flat = tf.reshape(im, tf.stack([-1, channels]))
David Dao's avatar
David Dao committed
108
109
110
111
112
113
114
115
116
117
118
            im_flat = tf.cast(im_flat, 'float32')
            Ia = tf.gather(im_flat, idx_a)
            Ib = tf.gather(im_flat, idx_b)
            Ic = tf.gather(im_flat, idx_c)
            Id = tf.gather(im_flat, idx_d)

            # and finally calculate interpolated values
            x0_f = tf.cast(x0, 'float32')
            x1_f = tf.cast(x1, 'float32')
            y0_f = tf.cast(y0, 'float32')
            y1_f = tf.cast(y1, 'float32')
119
120
121
122
            wa = tf.expand_dims(((x1_f-x) * (y1_f-y)), 1)
            wb = tf.expand_dims(((x1_f-x) * (y-y0_f)), 1)
            wc = tf.expand_dims(((x-x0_f) * (y1_f-y)), 1)
            wd = tf.expand_dims(((x-x0_f) * (y-y0_f)), 1)
David Dao's avatar
David Dao committed
123
124
            output = tf.add_n([wa*Ia, wb*Ib, wc*Ic, wd*Id])
            return output
125

David Dao's avatar
David Dao committed
126
127
128
129
130
131
132
    def _meshgrid(height, width):
        with tf.variable_scope('_meshgrid'):
            # This should be equivalent to:
            #  x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),
            #                         np.linspace(-1, 1, height))
            #  ones = np.ones(np.prod(x_t.shape))
            #  grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])
133
            x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])),
134
135
                            tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0]))
            y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1),
136
                            tf.ones(shape=tf.stack([1, width])))
David Dao's avatar
David Dao committed
137

138
139
            x_t_flat = tf.reshape(x_t, (1, -1))
            y_t_flat = tf.reshape(y_t, (1, -1))
David Dao's avatar
David Dao committed
140
141

            ones = tf.ones_like(x_t_flat)
142
            grid = tf.concat(axis=0, values=[x_t_flat, y_t_flat, ones])
David Dao's avatar
David Dao committed
143
144
            return grid

Timur's avatar
Timur committed
145
    def _transform(theta, input_dim, out_size):
David Dao's avatar
David Dao committed
146
147
148
        with tf.variable_scope('_transform'):
            num_batch = tf.shape(input_dim)[0]
            height = tf.shape(input_dim)[1]
149
            width = tf.shape(input_dim)[2]
David Dao's avatar
David Dao committed
150
151
152
153
154
155
156
            num_channels = tf.shape(input_dim)[3]
            theta = tf.reshape(theta, (-1, 2, 3))
            theta = tf.cast(theta, 'float32')

            # grid of (x_t, y_t, 1), eq (1) in ref [1]
            height_f = tf.cast(height, 'float32')
            width_f = tf.cast(width, 'float32')
Timur's avatar
Timur committed
157
            out_height = out_size[0]
158
            out_width = out_size[1]
David Dao's avatar
David Dao committed
159
            grid = _meshgrid(out_height, out_width)
160
161
            grid = tf.expand_dims(grid, 0)
            grid = tf.reshape(grid, [-1])
162
163
            grid = tf.tile(grid, tf.stack([num_batch]))
            grid = tf.reshape(grid, tf.stack([num_batch, 3, -1]))
164

David Dao's avatar
David Dao committed
165
            # Transform A x (x_t, y_t, 1)^T -> (x_s, y_s)
166
            T_g = tf.matmul(theta, grid)
167
168
169
170
            x_s = tf.slice(T_g, [0, 0, 0], [-1, 1, -1])
            y_s = tf.slice(T_g, [0, 1, 0], [-1, 1, -1])
            x_s_flat = tf.reshape(x_s, [-1])
            y_s_flat = tf.reshape(y_s, [-1])
David Dao's avatar
David Dao committed
171
172

            input_transformed = _interpolate(
173
174
                input_dim, x_s_flat, y_s_flat,
                out_size)
David Dao's avatar
David Dao committed
175

176
            output = tf.reshape(
177
                input_transformed, tf.stack([num_batch, out_height, out_width, num_channels]))
David Dao's avatar
David Dao committed
178
            return output
179

David Dao's avatar
David Dao committed
180
    with tf.variable_scope(name):
Timur's avatar
Timur committed
181
182
183
        output = _transform(theta, U, out_size)
        return output

184

Timur's avatar
Timur committed
185
186
187
188
189
def batch_transformer(U, thetas, out_size, name='BatchSpatialTransformer'):
    """Batch Spatial Transformer Layer

    Parameters
    ----------
190

Timur's avatar
Timur committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    U : float
        tensor of inputs [num_batch,height,width,num_channels]
    thetas : float
        a set of transformations for each input [num_batch,num_transforms,6]
    out_size : int
        the size of the output [out_height,out_width]

    Returns: float
        Tensor of size [num_batch*num_transforms,out_height,out_width,num_channels]
    """
    with tf.variable_scope(name):
        num_batch, num_transforms = map(int, thetas.get_shape().as_list()[:2])
        indices = [[i]*num_transforms for i in xrange(num_batch)]
        input_repeated = tf.gather(U, tf.reshape(indices, [-1]))
        return transformer(input_repeated, thetas, out_size)