spatial_transformer.py 7.77 KB
Newer Older
David Dao's avatar
David Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
from six.moves import xrange
David Dao's avatar
David Dao committed
16
17
import tensorflow as tf

18

Timur's avatar
Timur committed
19
def transformer(U, theta, out_size, name='SpatialTransformer', **kwargs):
David Dao's avatar
David Dao committed
20
    """Spatial Transformer Layer
21

David Dao's avatar
David Dao committed
22
23
    Implements a spatial transformer layer as described in [1]_.
    Based on [2]_ and edited by David Dao for Tensorflow.
24

David Dao's avatar
David Dao committed
25
26
    Parameters
    ----------
27
    U : float
David Dao's avatar
David Dao committed
28
        The output of a convolutional net should have the
29
30
        shape [num_batch, height, width, num_channels].
    theta: float
David Dao's avatar
David Dao committed
31
32
        The output of the
        localisation network should be [num_batch, 6].
33
34
    out_size: tuple of two ints
        The size of the output of the network (height, width)
Timur's avatar
Timur committed
35

David Dao's avatar
David Dao committed
36
37
38
39
40
41
    References
    ----------
    .. [1]  Spatial Transformer Networks
            Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu
            Submitted on 5 Jun 2015
    .. [2]  https://github.com/skaae/transformer_network/blob/master/transformerlayer.py
42

David Dao's avatar
David Dao committed
43
44
45
46
47
    Notes
    -----
    To initialize the network to the identity transform init
    ``theta`` to :
        identity = np.array([[1., 0., 0.],
48
                             [0., 1., 0.]])
David Dao's avatar
David Dao committed
49
50
        identity = identity.flatten()
        theta = tf.Variable(initial_value=identity)
51

David Dao's avatar
David Dao committed
52
    """
53

David Dao's avatar
David Dao committed
54
55
    def _repeat(x, n_repeats):
        with tf.variable_scope('_repeat'):
56
            rep = tf.transpose(
57
                tf.expand_dims(tf.ones(shape=tf.stack([n_repeats, ])), 1), [1, 0])
David Dao's avatar
David Dao committed
58
            rep = tf.cast(rep, 'int32')
59
60
            x = tf.matmul(tf.reshape(x, (-1, 1)), rep)
            return tf.reshape(x, [-1])
David Dao's avatar
David Dao committed
61

Timur's avatar
Timur committed
62
    def _interpolate(im, x, y, out_size):
David Dao's avatar
David Dao committed
63
64
65
66
67
68
69
70
71
72
73
        with tf.variable_scope('_interpolate'):
            # constants
            num_batch = tf.shape(im)[0]
            height = tf.shape(im)[1]
            width = tf.shape(im)[2]
            channels = tf.shape(im)[3]

            x = tf.cast(x, 'float32')
            y = tf.cast(y, 'float32')
            height_f = tf.cast(height, 'float32')
            width_f = tf.cast(width, 'float32')
Timur's avatar
Timur committed
74
            out_height = out_size[0]
75
            out_width = out_size[1]
David Dao's avatar
David Dao committed
76
77
78
79
80
            zero = tf.zeros([], dtype='int32')
            max_y = tf.cast(tf.shape(im)[1] - 1, 'int32')
            max_x = tf.cast(tf.shape(im)[2] - 1, 'int32')

            # scale indices from [-1, 1] to [0, width/height]
81
            x = (x + 1.0)*(width_f) / 2.0
David Dao's avatar
David Dao committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
            y = (y + 1.0)*(height_f) / 2.0

            # do sampling
            x0 = tf.cast(tf.floor(x), 'int32')
            x1 = x0 + 1
            y0 = tf.cast(tf.floor(y), 'int32')
            y1 = y0 + 1

            x0 = tf.clip_by_value(x0, zero, max_x)
            x1 = tf.clip_by_value(x1, zero, max_x)
            y0 = tf.clip_by_value(y0, zero, max_y)
            y1 = tf.clip_by_value(y1, zero, max_y)
            dim2 = width
            dim1 = width*height
            base = _repeat(tf.range(num_batch)*dim1, out_height*out_width)
            base_y0 = base + y0*dim2
            base_y1 = base + y1*dim2
            idx_a = base_y0 + x0
            idx_b = base_y1 + x0
            idx_c = base_y0 + x1
            idx_d = base_y1 + x1

104
105
            # use indices to lookup pixels in the flat image and restore
            # channels dim
106
            im_flat = tf.reshape(im, tf.stack([-1, channels]))
David Dao's avatar
David Dao committed
107
108
109
110
111
112
113
114
115
116
117
            im_flat = tf.cast(im_flat, 'float32')
            Ia = tf.gather(im_flat, idx_a)
            Ib = tf.gather(im_flat, idx_b)
            Ic = tf.gather(im_flat, idx_c)
            Id = tf.gather(im_flat, idx_d)

            # and finally calculate interpolated values
            x0_f = tf.cast(x0, 'float32')
            x1_f = tf.cast(x1, 'float32')
            y0_f = tf.cast(y0, 'float32')
            y1_f = tf.cast(y1, 'float32')
118
119
120
121
            wa = tf.expand_dims(((x1_f-x) * (y1_f-y)), 1)
            wb = tf.expand_dims(((x1_f-x) * (y-y0_f)), 1)
            wc = tf.expand_dims(((x-x0_f) * (y1_f-y)), 1)
            wd = tf.expand_dims(((x-x0_f) * (y-y0_f)), 1)
David Dao's avatar
David Dao committed
122
123
            output = tf.add_n([wa*Ia, wb*Ib, wc*Ic, wd*Id])
            return output
124

David Dao's avatar
David Dao committed
125
126
127
128
129
130
131
    def _meshgrid(height, width):
        with tf.variable_scope('_meshgrid'):
            # This should be equivalent to:
            #  x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),
            #                         np.linspace(-1, 1, height))
            #  ones = np.ones(np.prod(x_t.shape))
            #  grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])
132
            x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])),
133
134
                            tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0]))
            y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1),
135
                            tf.ones(shape=tf.stack([1, width])))
David Dao's avatar
David Dao committed
136

137
138
            x_t_flat = tf.reshape(x_t, (1, -1))
            y_t_flat = tf.reshape(y_t, (1, -1))
David Dao's avatar
David Dao committed
139
140

            ones = tf.ones_like(x_t_flat)
141
            grid = tf.concat(axis=0, values=[x_t_flat, y_t_flat, ones])
David Dao's avatar
David Dao committed
142
143
            return grid

Timur's avatar
Timur committed
144
    def _transform(theta, input_dim, out_size):
David Dao's avatar
David Dao committed
145
146
147
        with tf.variable_scope('_transform'):
            num_batch = tf.shape(input_dim)[0]
            height = tf.shape(input_dim)[1]
148
            width = tf.shape(input_dim)[2]
David Dao's avatar
David Dao committed
149
150
151
152
153
154
155
            num_channels = tf.shape(input_dim)[3]
            theta = tf.reshape(theta, (-1, 2, 3))
            theta = tf.cast(theta, 'float32')

            # grid of (x_t, y_t, 1), eq (1) in ref [1]
            height_f = tf.cast(height, 'float32')
            width_f = tf.cast(width, 'float32')
Timur's avatar
Timur committed
156
            out_height = out_size[0]
157
            out_width = out_size[1]
David Dao's avatar
David Dao committed
158
            grid = _meshgrid(out_height, out_width)
159
160
            grid = tf.expand_dims(grid, 0)
            grid = tf.reshape(grid, [-1])
161
162
            grid = tf.tile(grid, tf.stack([num_batch]))
            grid = tf.reshape(grid, tf.stack([num_batch, 3, -1]))
163

David Dao's avatar
David Dao committed
164
            # Transform A x (x_t, y_t, 1)^T -> (x_s, y_s)
165
            T_g = tf.matmul(theta, grid)
166
167
168
169
            x_s = tf.slice(T_g, [0, 0, 0], [-1, 1, -1])
            y_s = tf.slice(T_g, [0, 1, 0], [-1, 1, -1])
            x_s_flat = tf.reshape(x_s, [-1])
            y_s_flat = tf.reshape(y_s, [-1])
David Dao's avatar
David Dao committed
170
171

            input_transformed = _interpolate(
172
173
                input_dim, x_s_flat, y_s_flat,
                out_size)
David Dao's avatar
David Dao committed
174

175
            output = tf.reshape(
176
                input_transformed, tf.stack([num_batch, out_height, out_width, num_channels]))
David Dao's avatar
David Dao committed
177
            return output
178

David Dao's avatar
David Dao committed
179
    with tf.variable_scope(name):
Timur's avatar
Timur committed
180
181
182
        output = _transform(theta, U, out_size)
        return output

183

Timur's avatar
Timur committed
184
185
186
187
188
def batch_transformer(U, thetas, out_size, name='BatchSpatialTransformer'):
    """Batch Spatial Transformer Layer

    Parameters
    ----------
189

Timur's avatar
Timur committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    U : float
        tensor of inputs [num_batch,height,width,num_channels]
    thetas : float
        a set of transformations for each input [num_batch,num_transforms,6]
    out_size : int
        the size of the output [out_height,out_width]

    Returns: float
        Tensor of size [num_batch*num_transforms,out_height,out_width,num_channels]
    """
    with tf.variable_scope(name):
        num_batch, num_transforms = map(int, thetas.get_shape().as_list()[:2])
        indices = [[i]*num_transforms for i in xrange(num_batch)]
        input_repeated = tf.gather(U, tf.reshape(indices, [-1]))
        return transformer(input_repeated, thetas, out_size)