hungarian_matcher.py 2.21 KB
Newer Older
Kaushik Shivakumar's avatar
fix  
Kaushik Shivakumar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Hungarian bipartite matcher implementation."""

import numpy as np
19
from scipy.optimize import linear_sum_assignment
Kaushik Shivakumar's avatar
fix  
Kaushik Shivakumar committed
20

21
import tensorflow.compat.v1 as tf
Kaushik Shivakumar's avatar
fix  
Kaushik Shivakumar committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from object_detection.core import matcher


class HungarianBipartiteMatcher(matcher.Matcher):
  """Wraps a Hungarian bipartite matcher into TensorFlow."""

  def _match(self, similarity_matrix, valid_rows):
    """Optimally bipartite matches a collection rows and columns.

    Args:
      similarity_matrix: Float tensor of shape [N, M] with pairwise similarity
        where higher values mean more similar.
      valid_rows: A boolean tensor of shape [N] indicating the rows that are
        valid.

    Returns:
      match_results: int32 tensor of shape [M] with match_results[i]=-1
        meaning that column i is not matched and otherwise that it is matched to
        row match_results[i].
    """
    valid_row_sim_matrix = tf.gather(similarity_matrix,
                                     tf.squeeze(tf.where(valid_rows), axis=-1))
    distance_matrix = -1 * valid_row_sim_matrix

    def numpy_wrapper(inputs):
      def numpy_matching(input_matrix):
        row_indices, col_indices = linear_sum_assignment(input_matrix)
        match_results = np.full(input_matrix.shape[1], -1)
        match_results[col_indices] = row_indices
        return match_results.astype(np.int32)

      return tf.numpy_function(numpy_matching, inputs, Tout=[tf.int32])

    matching_result = tf.autograph.experimental.do_not_convert(
        numpy_wrapper)([distance_matrix])

    return tf.reshape(matching_result, [-1])