# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Hungarian bipartite matcher implementation.""" import numpy as np from scipy.optimize import linear_sum_assignment import tensorflow.compat.v1 as tf from object_detection.core import matcher class HungarianBipartiteMatcher(matcher.Matcher): """Wraps a Hungarian bipartite matcher into TensorFlow.""" def _match(self, similarity_matrix, valid_rows): """Optimally bipartite matches a collection rows and columns. Args: similarity_matrix: Float tensor of shape [N, M] with pairwise similarity where higher values mean more similar. valid_rows: A boolean tensor of shape [N] indicating the rows that are valid. Returns: match_results: int32 tensor of shape [M] with match_results[i]=-1 meaning that column i is not matched and otherwise that it is matched to row match_results[i]. """ valid_row_sim_matrix = tf.gather(similarity_matrix, tf.squeeze(tf.where(valid_rows), axis=-1)) distance_matrix = -1 * valid_row_sim_matrix def numpy_wrapper(inputs): def numpy_matching(input_matrix): row_indices, col_indices = linear_sum_assignment(input_matrix) match_results = np.full(input_matrix.shape[1], -1) match_results[col_indices] = row_indices return match_results.astype(np.int32) return tf.numpy_function(numpy_matching, inputs, Tout=[tf.int32]) matching_result = tf.autograph.experimental.do_not_convert( numpy_wrapper)([distance_matrix]) return tf.reshape(matching_result, [-1])