keras_common.py 5.99 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Common util functions an classes used by both keras cifar and imagenet."""
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

from absl import app as absl_app
from absl import flags
import numpy as np
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import imagenet_main
from official.resnet import imagenet_preprocessing
from official.resnet import resnet_run_loop
from official.resnet.keras import keras_resnet_model
from official.resnet.keras import resnet_model_tpu
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2


Shining Sun's avatar
Shining Sun committed
39
40
41
FLAGS = flags.FLAGS


42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
class TimeHistory(tf.keras.callbacks.Callback):
  """Callback for Keras models."""

  def __init__(self, batch_size):
    """Callback for Keras models.

    Args:
      batch_size: Total batch size.

    """
    self._batch_size = batch_size
    super(TimeHistory, self).__init__()

  def on_train_begin(self, logs=None):
    self.epoch_times_secs = []
    self.batch_times_secs = []
    self.record_batch = True

  def on_epoch_begin(self, epoch, logs=None):
    self.epoch_time_start = time.time()

  def on_epoch_end(self, epoch, logs=None):
    self.epoch_times_secs.append(time.time() - self.epoch_time_start)

  def on_batch_begin(self, batch, logs=None):
    if self.record_batch:
      self.batch_time_start = time.time()
      self.record_batch = False

  def on_batch_end(self, batch, logs=None):
    n = 100
    if batch % n == 0:
      last_n_batches = time.time() - self.batch_time_start
      examples_per_second = (self._batch_size * n) / last_n_batches
      self.batch_times_secs.append(last_n_batches)
      self.record_batch = True
      # TODO(anjalisridhar): add timestamp as well.
      if batch != 0:
        tf.logging.info("BenchmarkMetric: {'num_batches':%d, 'time_taken': %f,"
                        "'images_per_second': %f}" %
                        (batch, last_n_batches, examples_per_second))

class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
  """Callback to update learning rate on every batch (not epoch boundaries).

  N.B. Only support Keras optimizers, not TF optimizers.

  Args:
      schedule: a function that takes an epoch index and a batch index as input
          (both integer, indexed from 0) and returns a new learning rate as
          output (float).
  """

  def __init__(self, schedule, batch_size, num_images):
    super(LearningRateBatchScheduler, self).__init__()
    self.schedule = schedule
    self.batches_per_epoch = num_images / batch_size
    self.batch_size = batch_size
    self.epochs = -1
    self.prev_lr = -1

  def on_epoch_begin(self, epoch, logs=None):
    #if not hasattr(self.model.optimizer, 'learning_rate'):
    #  raise ValueError('Optimizer must have a "learning_rate" attribute.')
    self.epochs += 1

  def on_batch_begin(self, batch, logs=None):
    lr = self.schedule(self.epochs, batch, self.batches_per_epoch, self.batch_size)
    if not isinstance(lr, (float, np.float32, np.float64)):
      raise ValueError('The output of the "schedule" function should be float.')
    if lr != self.prev_lr:
      tf.keras.backend.set_value(self.model.optimizer.learning_rate, lr)
      self.prev_lr = lr
      tf.logging.debug('Epoch %05d Batch %05d: LearningRateBatchScheduler change '
                   'learning rate to %s.', self.epochs, batch, lr)

def get_optimizer_loss_and_metrics():
  # Use Keras ResNet50 applications model and native keras APIs
  # initialize RMSprop optimizer
  # TODO(anjalisridhar): Move to using MomentumOptimizer.
  # opt = tf.train.GradientDescentOptimizer(learning_rate=0.0001)
  # I am setting an initial LR of 0.001 since this will be reset
  # at the beginning of the training loop.
  opt = gradient_descent_v2.SGD(learning_rate=0.1, momentum=0.9)

  # TF Optimizer:
Shining Sun's avatar
Shining Sun committed
128
  # learning_rate = BASE_LEARNING_RATE * FLAGS.batch_size / 256
129
130
131
132
133
134
135
136
  # opt = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9)
  loss = 'categorical_crossentropy'
  accuracy = 'categorical_accuracy'

  return opt, loss, accuracy


def get_dist_strategy():
Shining Sun's avatar
Shining Sun committed
137
  if FLAGS.num_gpus == 1 and FLAGS.dist_strat_off:
138
139
140
141
    print('Not using distribution strategies.')
    strategy = None
  else:
    strategy = distribution_utils.get_distribution_strategy(
Shining Sun's avatar
Shining Sun committed
142
        num_gpus=FLAGS.num_gpus)
143
144
145

  return strategy

Shining Sun's avatar
Shining Sun committed
146
147
148

def get_fit_callbacks(learning_rate_schedule_fn):
  time_callback = TimeHistory(FLAGS.batch_size)
149
150

  tensorboard_callback = tf.keras.callbacks.TensorBoard(
Shining Sun's avatar
Shining Sun committed
151
    log_dir=FLAGS.model_dir)
152
153
    #update_freq="batch")  # Add this if want per batch logging.

Shining Sun's avatar
Shining Sun committed
154
155
156
  lr_callback = LearningRateBatchScheduler(
    learning_rate_schedule_fn,
    batch_size=FLAGS.batch_size,
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    num_images=imagenet_main._NUM_IMAGES['train'])

  return time_callback, tensorboard_callback, lr_callback

def analyze_eval_result(eval_output):
  stats = {}
  stats['accuracy_top_1'] = eval_output[1]
  stats['eval_loss'] = eval_output[0]
  stats['training_loss'] = history.history['loss'][-1]
  stats['training_accuracy_top_1'] = history.history['categorical_accuracy'][-1]

  print('top_1 accuracy:{}'.format(stats['accuracy_top_1']))
  print('top_1_training_accuracy:{}'.format(stats['training_accuracy_top_1']))

Shining Sun's avatar
Shining Sun committed
171
  return stats