model_builder.py 50.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A function to build a DetectionModel from configuration."""
17

18
import functools
19
import sys
Vighnesh Birodkar's avatar
Vighnesh Birodkar committed
20
21
22

from absl import logging

23
24
25
26
27
28
29
30
31
from object_detection.builders import anchor_generator_builder
from object_detection.builders import box_coder_builder
from object_detection.builders import box_predictor_builder
from object_detection.builders import hyperparams_builder
from object_detection.builders import image_resizer_builder
from object_detection.builders import losses_builder
from object_detection.builders import matcher_builder
from object_detection.builders import post_processing_builder
from object_detection.builders import region_similarity_calculator_builder as sim_calc
32
from object_detection.core import balanced_positive_negative_sampler as sampler
33
from object_detection.core import post_processing
34
from object_detection.core import target_assigner
35
36
from object_detection.meta_architectures import center_net_meta_arch
from object_detection.meta_architectures import context_rcnn_meta_arch
37
38
39
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.meta_architectures import rfcn_meta_arch
from object_detection.meta_architectures import ssd_meta_arch
40
from object_detection.predictors.heads import mask_head
41
from object_detection.protos import losses_pb2
42
from object_detection.protos import model_pb2
43
from object_detection.utils import label_map_util
44
from object_detection.utils import ops
45
from object_detection.utils import spatial_transform_ops as spatial_ops
46
47
48
49
50
51
52
53
54
from object_detection.utils import tf_version

## Feature Extractors for TF
## This section conditionally imports different feature extractors based on the
## Tensorflow version.
##
# pylint: disable=g-import-not-at-top
if tf_version.is_tf2():
  from object_detection.models import center_net_hourglass_feature_extractor
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
55
  from object_detection.models import center_net_mobilenet_v2_feature_extractor
56
  from object_detection.models import center_net_mobilenet_v2_fpn_feature_extractor
57
  from object_detection.models import center_net_resnet_feature_extractor
58
  from object_detection.models import center_net_resnet_v1_fpn_feature_extractor
59
60
61
  from object_detection.models import faster_rcnn_inception_resnet_v2_keras_feature_extractor as frcnn_inc_res_keras
  from object_detection.models import faster_rcnn_resnet_keras_feature_extractor as frcnn_resnet_keras
  from object_detection.models import ssd_resnet_v1_fpn_keras_feature_extractor as ssd_resnet_v1_fpn_keras
62
  from object_detection.models import faster_rcnn_resnet_v1_fpn_keras_feature_extractor as frcnn_resnet_fpn_keras
63
64
65
66
67
  from object_detection.models.ssd_mobilenet_v1_fpn_keras_feature_extractor import SSDMobileNetV1FpnKerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_keras_feature_extractor import SSDMobileNetV1KerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_fpn_keras_feature_extractor import SSDMobileNetV2FpnKerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_keras_feature_extractor import SSDMobileNetV2KerasFeatureExtractor
  from object_detection.predictors import rfcn_keras_box_predictor
68
69
  if sys.version_info[0] >= 3:
    from object_detection.models import ssd_efficientnet_bifpn_feature_extractor as ssd_efficientnet_bifpn
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

if tf_version.is_tf1():
  from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res
  from object_detection.models import faster_rcnn_inception_v2_feature_extractor as frcnn_inc_v2
  from object_detection.models import faster_rcnn_nas_feature_extractor as frcnn_nas
  from object_detection.models import faster_rcnn_pnas_feature_extractor as frcnn_pnas
  from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as frcnn_resnet_v1
  from object_detection.models import ssd_resnet_v1_fpn_feature_extractor as ssd_resnet_v1_fpn
  from object_detection.models import ssd_resnet_v1_ppn_feature_extractor as ssd_resnet_v1_ppn
  from object_detection.models.embedded_ssd_mobilenet_v1_feature_extractor import EmbeddedSSDMobileNetV1FeatureExtractor
  from object_detection.models.ssd_inception_v2_feature_extractor import SSDInceptionV2FeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_fpn_feature_extractor import SSDMobileNetV2FpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_mnasfpn_feature_extractor import SSDMobileNetV2MnasFPNFeatureExtractor
  from object_detection.models.ssd_inception_v3_feature_extractor import SSDInceptionV3FeatureExtractor
  from object_detection.models.ssd_mobilenet_edgetpu_feature_extractor import SSDMobileNetEdgeTPUFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_fpn_feature_extractor import SSDMobileNetV1FpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_ppn_feature_extractor import SSDMobileNetV1PpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_feature_extractor import SSDMobileNetV2FeatureExtractor
  from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3LargeFeatureExtractor
  from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3SmallFeatureExtractor
91
92
93
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetCPUFeatureExtractor
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetDSPFeatureExtractor
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetEdgeTPUFeatureExtractor
94
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetGPUFeatureExtractor
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
  from object_detection.models.ssd_pnasnet_feature_extractor import SSDPNASNetFeatureExtractor
  from object_detection.predictors import rfcn_box_predictor
# pylint: enable=g-import-not-at-top

if tf_version.is_tf2():
  SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
      'ssd_mobilenet_v1_keras': SSDMobileNetV1KerasFeatureExtractor,
      'ssd_mobilenet_v1_fpn_keras': SSDMobileNetV1FpnKerasFeatureExtractor,
      'ssd_mobilenet_v2_keras': SSDMobileNetV2KerasFeatureExtractor,
      'ssd_mobilenet_v2_fpn_keras': SSDMobileNetV2FpnKerasFeatureExtractor,
      'ssd_resnet50_v1_fpn_keras':
          ssd_resnet_v1_fpn_keras.SSDResNet50V1FpnKerasFeatureExtractor,
      'ssd_resnet101_v1_fpn_keras':
          ssd_resnet_v1_fpn_keras.SSDResNet101V1FpnKerasFeatureExtractor,
      'ssd_resnet152_v1_fpn_keras':
          ssd_resnet_v1_fpn_keras.SSDResNet152V1FpnKerasFeatureExtractor,
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
      'ssd_efficientnet-b0_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB0BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b1_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB1BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b2_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB2BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b3_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB3BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b4_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB4BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b5_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB5BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b6_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB6BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b7_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB7BiFPNKerasFeatureExtractor,
127
  }
128

129
130
131
132
133
134
135
136
137
  FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
      'faster_rcnn_resnet50_keras':
          frcnn_resnet_keras.FasterRCNNResnet50KerasFeatureExtractor,
      'faster_rcnn_resnet101_keras':
          frcnn_resnet_keras.FasterRCNNResnet101KerasFeatureExtractor,
      'faster_rcnn_resnet152_keras':
          frcnn_resnet_keras.FasterRCNNResnet152KerasFeatureExtractor,
      'faster_rcnn_inception_resnet_v2_keras':
      frcnn_inc_res_keras.FasterRCNNInceptionResnetV2KerasFeatureExtractor,
138
      'faster_rcnn_resnet50_fpn_keras':
139
          frcnn_resnet_fpn_keras.FasterRCNNResnet50FpnKerasFeatureExtractor,
140
      'faster_rcnn_resnet101_fpn_keras':
141
          frcnn_resnet_fpn_keras.FasterRCNNResnet101FpnKerasFeatureExtractor,
142
      'faster_rcnn_resnet152_fpn_keras':
143
          frcnn_resnet_fpn_keras.FasterRCNNResnet152FpnKerasFeatureExtractor,
144
  }
145

146
  CENTER_NET_EXTRACTOR_FUNCTION_MAP = {
147
148
149
150
      'resnet_v2_50':
          center_net_resnet_feature_extractor.resnet_v2_50,
      'resnet_v2_101':
          center_net_resnet_feature_extractor.resnet_v2_101,
Yu-hui Chen's avatar
Yu-hui Chen committed
151
152
153
154
      'resnet_v1_18_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_18_fpn,
      'resnet_v1_34_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_34_fpn,
155
156
157
158
      'resnet_v1_50_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_50_fpn,
      'resnet_v1_101_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_101_fpn,
159
160
161
162
163
164
165
166
      'hourglass_10':
          center_net_hourglass_feature_extractor.hourglass_10,
      'hourglass_20':
          center_net_hourglass_feature_extractor.hourglass_20,
      'hourglass_32':
          center_net_hourglass_feature_extractor.hourglass_32,
      'hourglass_52':
          center_net_hourglass_feature_extractor.hourglass_52,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
167
168
169
170
      'hourglass_104':
          center_net_hourglass_feature_extractor.hourglass_104,
      'mobilenet_v2':
          center_net_mobilenet_v2_feature_extractor.mobilenet_v2,
171
172
      'mobilenet_v2_fpn':
          center_net_mobilenet_v2_fpn_feature_extractor.mobilenet_v2_fpn,
173
174
175
      'mobilenet_v2_fpn_sep_conv':
          center_net_mobilenet_v2_fpn_feature_extractor
          .mobilenet_v2_fpn_sep_conv,
176
  }
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
  FEATURE_EXTRACTOR_MAPS = [
      CENTER_NET_EXTRACTOR_FUNCTION_MAP,
      FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP,
      SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP
  ]

if tf_version.is_tf1():
  SSD_FEATURE_EXTRACTOR_CLASS_MAP = {
      'ssd_inception_v2':
          SSDInceptionV2FeatureExtractor,
      'ssd_inception_v3':
          SSDInceptionV3FeatureExtractor,
      'ssd_mobilenet_v1':
          SSDMobileNetV1FeatureExtractor,
      'ssd_mobilenet_v1_fpn':
          SSDMobileNetV1FpnFeatureExtractor,
      'ssd_mobilenet_v1_ppn':
          SSDMobileNetV1PpnFeatureExtractor,
      'ssd_mobilenet_v2':
          SSDMobileNetV2FeatureExtractor,
      'ssd_mobilenet_v2_fpn':
          SSDMobileNetV2FpnFeatureExtractor,
      'ssd_mobilenet_v2_mnasfpn':
          SSDMobileNetV2MnasFPNFeatureExtractor,
      'ssd_mobilenet_v3_large':
          SSDMobileNetV3LargeFeatureExtractor,
      'ssd_mobilenet_v3_small':
          SSDMobileNetV3SmallFeatureExtractor,
      'ssd_mobilenet_edgetpu':
          SSDMobileNetEdgeTPUFeatureExtractor,
      'ssd_resnet50_v1_fpn':
          ssd_resnet_v1_fpn.SSDResnet50V1FpnFeatureExtractor,
      'ssd_resnet101_v1_fpn':
          ssd_resnet_v1_fpn.SSDResnet101V1FpnFeatureExtractor,
      'ssd_resnet152_v1_fpn':
          ssd_resnet_v1_fpn.SSDResnet152V1FpnFeatureExtractor,
      'ssd_resnet50_v1_ppn':
          ssd_resnet_v1_ppn.SSDResnet50V1PpnFeatureExtractor,
      'ssd_resnet101_v1_ppn':
          ssd_resnet_v1_ppn.SSDResnet101V1PpnFeatureExtractor,
      'ssd_resnet152_v1_ppn':
          ssd_resnet_v1_ppn.SSDResnet152V1PpnFeatureExtractor,
      'embedded_ssd_mobilenet_v1':
          EmbeddedSSDMobileNetV1FeatureExtractor,
      'ssd_pnasnet':
          SSDPNASNetFeatureExtractor,
224
225
226
227
228
229
230
231
      'ssd_mobiledet_cpu':
          SSDMobileDetCPUFeatureExtractor,
      'ssd_mobiledet_dsp':
          SSDMobileDetDSPFeatureExtractor,
      'ssd_mobiledet_edgetpu':
          SSDMobileDetEdgeTPUFeatureExtractor,
      'ssd_mobiledet_gpu':
          SSDMobileDetGPUFeatureExtractor,
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
  }

  FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP = {
      'faster_rcnn_nas':
      frcnn_nas.FasterRCNNNASFeatureExtractor,
      'faster_rcnn_pnas':
      frcnn_pnas.FasterRCNNPNASFeatureExtractor,
      'faster_rcnn_inception_resnet_v2':
      frcnn_inc_res.FasterRCNNInceptionResnetV2FeatureExtractor,
      'faster_rcnn_inception_v2':
      frcnn_inc_v2.FasterRCNNInceptionV2FeatureExtractor,
      'faster_rcnn_resnet50':
      frcnn_resnet_v1.FasterRCNNResnet50FeatureExtractor,
      'faster_rcnn_resnet101':
      frcnn_resnet_v1.FasterRCNNResnet101FeatureExtractor,
      'faster_rcnn_resnet152':
      frcnn_resnet_v1.FasterRCNNResnet152FeatureExtractor,
  }

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
251
252
  CENTER_NET_EXTRACTOR_FUNCTION_MAP = {}

253
254
  FEATURE_EXTRACTOR_MAPS = [
      SSD_FEATURE_EXTRACTOR_CLASS_MAP,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
255
256
      FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP,
      CENTER_NET_EXTRACTOR_FUNCTION_MAP
257
  ]
258

259
260
261
262
263
264
265

def _check_feature_extractor_exists(feature_extractor_type):
  feature_extractors = set().union(*FEATURE_EXTRACTOR_MAPS)
  if feature_extractor_type not in feature_extractors:
    raise ValueError('{} is not supported. See `model_builder.py` for features '
                     'extractors compatible with different versions of '
                     'Tensorflow'.format(feature_extractor_type))
266

267

268
269
270
def _build_ssd_feature_extractor(feature_extractor_config,
                                 is_training,
                                 freeze_batchnorm,
271
                                 reuse_weights=None):
272
273
274
275
276
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
277
278
279
280
    freeze_batchnorm: Whether to freeze batch norm parameters during
      training or not. When training with a small batch size (e.g. 1), it is
      desirable to freeze batch norm update and use pretrained batch norm
      params.
281
282
283
284
285
286
287
288
289
290
291
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
292
  pad_to_multiple = feature_extractor_config.pad_to_multiple
293
  use_explicit_padding = feature_extractor_config.use_explicit_padding
294
  use_depthwise = feature_extractor_config.use_depthwise
295

296
297
  is_keras = tf_version.is_tf2()
  if is_keras:
298
299
300
301
302
    conv_hyperparams = hyperparams_builder.KerasLayerHyperparams(
        feature_extractor_config.conv_hyperparams)
  else:
    conv_hyperparams = hyperparams_builder.build(
        feature_extractor_config.conv_hyperparams, is_training)
303
304
  override_base_feature_extractor_hyperparams = (
      feature_extractor_config.override_base_feature_extractor_hyperparams)
305

306
  if not is_keras and feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
307
308
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

309
  if is_keras:
310
311
312
313
    feature_extractor_class = SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
        feature_type]
  else:
    feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
  kwargs = {
      'is_training':
          is_training,
      'depth_multiplier':
          depth_multiplier,
      'min_depth':
          min_depth,
      'pad_to_multiple':
          pad_to_multiple,
      'use_explicit_padding':
          use_explicit_padding,
      'use_depthwise':
          use_depthwise,
      'override_base_feature_extractor_hyperparams':
          override_base_feature_extractor_hyperparams
  }

331
332
333
334
335
336
  if feature_extractor_config.HasField('replace_preprocessor_with_placeholder'):
    kwargs.update({
        'replace_preprocessor_with_placeholder':
            feature_extractor_config.replace_preprocessor_with_placeholder
    })

pkulzc's avatar
pkulzc committed
337
338
339
  if feature_extractor_config.HasField('num_layers'):
    kwargs.update({'num_layers': feature_extractor_config.num_layers})

340
  if is_keras:
341
342
343
344
345
346
347
348
349
350
351
    kwargs.update({
        'conv_hyperparams': conv_hyperparams,
        'inplace_batchnorm_update': False,
        'freeze_batchnorm': freeze_batchnorm
    })
  else:
    kwargs.update({
        'conv_hyperparams_fn': conv_hyperparams,
        'reuse_weights': reuse_weights,
    })

352

353
354
  if feature_extractor_config.HasField('fpn'):
    kwargs.update({
355
356
357
358
359
360
        'fpn_min_level':
            feature_extractor_config.fpn.min_level,
        'fpn_max_level':
            feature_extractor_config.fpn.max_level,
        'additional_layer_depth':
            feature_extractor_config.fpn.additional_layer_depth,
361
362
    })

363
364
365
366
367
368
369
370
  if feature_extractor_config.HasField('bifpn'):
    kwargs.update({
        'bifpn_min_level': feature_extractor_config.bifpn.min_level,
        'bifpn_max_level': feature_extractor_config.bifpn.max_level,
        'bifpn_num_iterations': feature_extractor_config.bifpn.num_iterations,
        'bifpn_num_filters': feature_extractor_config.bifpn.num_filters,
        'bifpn_combine_method': feature_extractor_config.bifpn.combine_method,
    })
371

372
  return feature_extractor_class(**kwargs)
373
374


375
def _build_ssd_model(ssd_config, is_training, add_summaries):
376
377
378
379
380
381
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
382
    add_summaries: Whether to add tf summaries in the model.
383
384
  Returns:
    SSDMetaArch based on the config.
385

386
387
388
389
390
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes
391
  _check_feature_extractor_exists(ssd_config.feature_extractor.type)
392
393

  # Feature extractor
394
  feature_extractor = _build_ssd_feature_extractor(
395
      feature_extractor_config=ssd_config.feature_extractor,
396
      freeze_batchnorm=ssd_config.freeze_batchnorm,
397
      is_training=is_training)
398
399
400
401
402

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
403
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
404
  negative_class_weight = ssd_config.negative_class_weight
405
406
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
407
408
  if feature_extractor.is_keras_model:
    ssd_box_predictor = box_predictor_builder.build_keras(
409
        hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
410
411
412
413
414
415
416
417
418
419
420
421
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=anchor_generator
        .num_anchors_per_location(),
        box_predictor_config=ssd_config.box_predictor,
        is_training=is_training,
        num_classes=num_classes,
        add_background_class=ssd_config.add_background_class)
  else:
    ssd_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build, ssd_config.box_predictor, is_training,
        num_classes, ssd_config.add_background_class)
422
423
424
425
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
426
427
   localization_weight, hard_example_miner, random_example_sampler,
   expected_loss_weights_fn) = losses_builder.build(ssd_config.loss)
428
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
429
  normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize
430
431
432
433

  equalization_loss_config = ops.EqualizationLossConfig(
      weight=ssd_config.loss.equalization_loss.weight,
      exclude_prefixes=ssd_config.loss.equalization_loss.exclude_prefixes)
434
435
436
437
438

  target_assigner_instance = target_assigner.TargetAssigner(
      region_similarity_calculator,
      matcher,
      box_coder,
439
      negative_class_weight=negative_class_weight)
440

441
  ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch
442
  kwargs = {}
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

  return ssd_meta_arch_fn(
      is_training=is_training,
      anchor_generator=anchor_generator,
      box_predictor=ssd_box_predictor,
      box_coder=box_coder,
      feature_extractor=feature_extractor,
      encode_background_as_zeros=encode_background_as_zeros,
      image_resizer_fn=image_resizer_fn,
      non_max_suppression_fn=non_max_suppression_fn,
      score_conversion_fn=score_conversion_fn,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      classification_loss_weight=classification_weight,
      localization_loss_weight=localization_weight,
      normalize_loss_by_num_matches=normalize_loss_by_num_matches,
      hard_example_miner=hard_example_miner,
460
      target_assigner_instance=target_assigner_instance,
461
      add_summaries=add_summaries,
462
463
      normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
464
      inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
465
      add_background_class=ssd_config.add_background_class,
466
      explicit_background_class=ssd_config.explicit_background_class,
467
      random_example_sampler=random_example_sampler,
468
469
470
471
      expected_loss_weights_fn=expected_loss_weights_fn,
      use_confidences_as_targets=ssd_config.use_confidences_as_targets,
      implicit_example_weight=ssd_config.implicit_example_weight,
      equalization_loss_config=equalization_loss_config,
472
473
      return_raw_detections_during_predict=(
          ssd_config.return_raw_detections_during_predict),
474
      **kwargs)
475
476
477


def _build_faster_rcnn_feature_extractor(
478
    feature_extractor_config, is_training, reuse_weights=True,
479
    inplace_batchnorm_update=False):
480
481
482
483
484
485
486
  """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.
487
488
489
490
491
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.
492
493
494
495
496
497
498

  Returns:
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
499
500
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
501
502
503
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
504
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable
505
506
507
508
509
510
511

  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
512
      is_training, first_stage_features_stride,
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
      batch_norm_trainable, reuse_weights=reuse_weights)


def _build_faster_rcnn_keras_feature_extractor(
    feature_extractor_config, is_training,
    inplace_batchnorm_update=False):
  """Builds a faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor from config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.

  Returns:
    faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable

  if feature_type not in FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

  kwargs = {}

  if feature_extractor_config.HasField('conv_hyperparams'):
    kwargs.update({
        'conv_hyperparams':
            hyperparams_builder.KerasLayerHyperparams(
                feature_extractor_config.conv_hyperparams),
        'override_base_feature_extractor_hyperparams':
            feature_extractor_config.override_base_feature_extractor_hyperparams
    })

  if feature_extractor_config.HasField('fpn'):
    kwargs.update({
        'fpn_min_level':
            feature_extractor_config.fpn.min_level,
        'fpn_max_level':
            feature_extractor_config.fpn.max_level,
        'additional_layer_depth':
            feature_extractor_config.fpn.additional_layer_depth,
    })

571
572
  return feature_extractor_class(
      is_training, first_stage_features_stride,
573
      batch_norm_trainable, **kwargs)
574
575


576
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries):
577
578
579
580
581
582
583
  """Builds a Faster R-CNN or R-FCN detection model based on the model config.

  Builds R-FCN model if the second_stage_box_predictor in the config is of type
  `rfcn_box_predictor` else builds a Faster R-CNN model.

  Args:
    frcnn_config: A faster_rcnn.proto object containing the config for the
584
      desired FasterRCNNMetaArch or RFCNMetaArch.
585
    is_training: True if this model is being built for training purposes.
586
    add_summaries: Whether to add tf summaries in the model.
587
588
589

  Returns:
    FasterRCNNMetaArch based on the config.
590

591
592
593
594
595
596
  Raises:
    ValueError: If frcnn_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = frcnn_config.num_classes
  image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)
597
598
  _check_feature_extractor_exists(frcnn_config.feature_extractor.type)
  is_keras = tf_version.is_tf2()
599

syiming's avatar
syiming committed
600
  if is_keras:
601
602
603
604
605
606
607
    feature_extractor = _build_faster_rcnn_keras_feature_extractor(
        frcnn_config.feature_extractor, is_training,
        inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
  else:
    feature_extractor = _build_faster_rcnn_feature_extractor(
        frcnn_config.feature_extractor, is_training,
        inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
608

609
  number_of_stages = frcnn_config.number_of_stages
610
611
612
  first_stage_anchor_generator = anchor_generator_builder.build(
      frcnn_config.first_stage_anchor_generator)

613
614
615
616
  first_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'proposal',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
617
  first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
618
619
620
621
622
623
624
  if is_keras:
    first_stage_box_predictor_arg_scope_fn = (
        hyperparams_builder.KerasLayerHyperparams(
            frcnn_config.first_stage_box_predictor_conv_hyperparams))
  else:
    first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build(
        frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
625
626
627
628
  first_stage_box_predictor_kernel_size = (
      frcnn_config.first_stage_box_predictor_kernel_size)
  first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
  first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
629
630
  use_static_shapes = frcnn_config.use_static_shapes and (
      frcnn_config.use_static_shapes_for_eval or is_training)
631
632
  first_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.first_stage_positive_balance_fraction,
633
634
      is_static=(frcnn_config.use_static_balanced_label_sampler and
                 use_static_shapes))
635
  first_stage_max_proposals = frcnn_config.first_stage_max_proposals
636
637
638
639
640
641
642
643
644
645
646
647
648
  if (frcnn_config.first_stage_nms_iou_threshold < 0 or
      frcnn_config.first_stage_nms_iou_threshold > 1.0):
    raise ValueError('iou_threshold not in [0, 1.0].')
  if (is_training and frcnn_config.second_stage_batch_size >
      first_stage_max_proposals):
    raise ValueError('second_stage_batch_size should be no greater than '
                     'first_stage_max_proposals.')
  first_stage_non_max_suppression_fn = functools.partial(
      post_processing.batch_multiclass_non_max_suppression,
      score_thresh=frcnn_config.first_stage_nms_score_threshold,
      iou_thresh=frcnn_config.first_stage_nms_iou_threshold,
      max_size_per_class=frcnn_config.first_stage_max_proposals,
      max_total_size=frcnn_config.first_stage_max_proposals,
Pooya Davoodi's avatar
Pooya Davoodi committed
649
      use_static_shapes=use_static_shapes,
650
      use_partitioned_nms=frcnn_config.use_partitioned_nms_in_first_stage,
Pooya Davoodi's avatar
Pooya Davoodi committed
651
      use_combined_nms=frcnn_config.use_combined_nms_in_first_stage)
652
653
654
655
656
657
658
659
  first_stage_loc_loss_weight = (
      frcnn_config.first_stage_localization_loss_weight)
  first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight

  initial_crop_size = frcnn_config.initial_crop_size
  maxpool_kernel_size = frcnn_config.maxpool_kernel_size
  maxpool_stride = frcnn_config.maxpool_stride

660
661
662
663
  second_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'detection',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
  if is_keras:
    second_stage_box_predictor = box_predictor_builder.build_keras(
        hyperparams_builder.KerasLayerHyperparams,
        freeze_batchnorm=False,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=[1],
        box_predictor_config=frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
  else:
    second_stage_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build,
        frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
679
  second_stage_batch_size = frcnn_config.second_stage_batch_size
680
681
  second_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.second_stage_balance_fraction,
682
683
      is_static=(frcnn_config.use_static_balanced_label_sampler and
                 use_static_shapes))
684
685
686
687
  (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
  ) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
  second_stage_localization_loss_weight = (
      frcnn_config.second_stage_localization_loss_weight)
688
689
690
  second_stage_classification_loss = (
      losses_builder.build_faster_rcnn_classification_loss(
          frcnn_config.second_stage_classification_loss))
691
692
  second_stage_classification_loss_weight = (
      frcnn_config.second_stage_classification_loss_weight)
693
694
  second_stage_mask_prediction_loss_weight = (
      frcnn_config.second_stage_mask_prediction_loss_weight)
695
696
697
698
699
700
701
702

  hard_example_miner = None
  if frcnn_config.HasField('hard_example_miner'):
    hard_example_miner = losses_builder.build_hard_example_miner(
        frcnn_config.hard_example_miner,
        second_stage_classification_loss_weight,
        second_stage_localization_loss_weight)

703
  crop_and_resize_fn = (
704
705
706
      spatial_ops.multilevel_matmul_crop_and_resize
      if frcnn_config.use_matmul_crop_and_resize
      else spatial_ops.multilevel_native_crop_and_resize)
707
708
  clip_anchors_to_image = (
      frcnn_config.clip_anchors_to_image)
709

710
  common_kwargs = {
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
      'is_training':
          is_training,
      'num_classes':
          num_classes,
      'image_resizer_fn':
          image_resizer_fn,
      'feature_extractor':
          feature_extractor,
      'number_of_stages':
          number_of_stages,
      'first_stage_anchor_generator':
          first_stage_anchor_generator,
      'first_stage_target_assigner':
          first_stage_target_assigner,
      'first_stage_atrous_rate':
          first_stage_atrous_rate,
727
      'first_stage_box_predictor_arg_scope_fn':
728
          first_stage_box_predictor_arg_scope_fn,
729
      'first_stage_box_predictor_kernel_size':
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
          first_stage_box_predictor_kernel_size,
      'first_stage_box_predictor_depth':
          first_stage_box_predictor_depth,
      'first_stage_minibatch_size':
          first_stage_minibatch_size,
      'first_stage_sampler':
          first_stage_sampler,
      'first_stage_non_max_suppression_fn':
          first_stage_non_max_suppression_fn,
      'first_stage_max_proposals':
          first_stage_max_proposals,
      'first_stage_localization_loss_weight':
          first_stage_loc_loss_weight,
      'first_stage_objectness_loss_weight':
          first_stage_obj_loss_weight,
      'second_stage_target_assigner':
          second_stage_target_assigner,
      'second_stage_batch_size':
          second_stage_batch_size,
      'second_stage_sampler':
          second_stage_sampler,
751
      'second_stage_non_max_suppression_fn':
752
753
754
          second_stage_non_max_suppression_fn,
      'second_stage_score_conversion_fn':
          second_stage_score_conversion_fn,
755
      'second_stage_localization_loss_weight':
756
          second_stage_localization_loss_weight,
757
      'second_stage_classification_loss':
758
          second_stage_classification_loss,
759
      'second_stage_classification_loss_weight':
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
          second_stage_classification_loss_weight,
      'hard_example_miner':
          hard_example_miner,
      'add_summaries':
          add_summaries,
      'crop_and_resize_fn':
          crop_and_resize_fn,
      'clip_anchors_to_image':
          clip_anchors_to_image,
      'use_static_shapes':
          use_static_shapes,
      'resize_masks':
          frcnn_config.resize_masks,
      'return_raw_detections_during_predict':
          frcnn_config.return_raw_detections_during_predict,
      'output_final_box_features':
776
777
778
          frcnn_config.output_final_box_features,
      'output_final_box_rpn_features':
          frcnn_config.output_final_box_rpn_features,
779
  }
780

781
782
783
784
785
  if ((not is_keras and isinstance(second_stage_box_predictor,
                                   rfcn_box_predictor.RfcnBoxPredictor)) or
      (is_keras and
       isinstance(second_stage_box_predictor,
                  rfcn_keras_box_predictor.RfcnKerasBoxPredictor))):
786
787
788
    return rfcn_meta_arch.RFCNMetaArch(
        second_stage_rfcn_box_predictor=second_stage_box_predictor,
        **common_kwargs)
789
790
791
792
793
794
  elif frcnn_config.HasField('context_config'):
    context_config = frcnn_config.context_config
    common_kwargs.update({
        'attention_bottleneck_dimension':
            context_config.attention_bottleneck_dimension,
        'attention_temperature':
795
796
797
798
799
800
801
802
803
804
805
806
807
            context_config.attention_temperature,
        'use_self_attention':
            context_config.use_self_attention,
        'use_long_term_attention':
            context_config.use_long_term_attention,
        'self_attention_in_sequence':
            context_config.self_attention_in_sequence,
        'num_attention_heads':
            context_config.num_attention_heads,
        'num_attention_layers':
            context_config.num_attention_layers,
        'attention_position':
            context_config.attention_position
808
809
810
811
812
813
814
815
816
    })
    return context_rcnn_meta_arch.ContextRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
        **common_kwargs)
817
818
819
820
821
822
  else:
    return faster_rcnn_meta_arch.FasterRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
823
824
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
825
        **common_kwargs)
826
827
828
829
830
831
832
833
834

EXPERIMENTAL_META_ARCH_BUILDER_MAP = {
}


def _build_experimental_model(config, is_training, add_summaries=True):
  return EXPERIMENTAL_META_ARCH_BUILDER_MAP[config.name](
      is_training, add_summaries)

835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862

# The class ID in the groundtruth/model architecture is usually 0-based while
# the ID in the label map is 1-based. The offset is used to convert between the
# the two.
CLASS_ID_OFFSET = 1
KEYPOINT_STD_DEV_DEFAULT = 1.0


def keypoint_proto_to_params(kp_config, keypoint_map_dict):
  """Converts CenterNet.KeypointEstimation proto to parameter namedtuple."""
  label_map_item = keypoint_map_dict[kp_config.keypoint_class_name]

  classification_loss, localization_loss, _, _, _, _, _ = (
      losses_builder.build(kp_config.loss))

  keypoint_indices = [
      keypoint.id for keypoint in label_map_item.keypoints
  ]
  keypoint_labels = [
      keypoint.label for keypoint in label_map_item.keypoints
  ]
  keypoint_std_dev_dict = {
      label: KEYPOINT_STD_DEV_DEFAULT for label in keypoint_labels
  }
  if kp_config.keypoint_label_to_std:
    for label, value in kp_config.keypoint_label_to_std.items():
      keypoint_std_dev_dict[label] = value
  keypoint_std_dev = [keypoint_std_dev_dict[label] for label in keypoint_labels]
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
  if kp_config.HasField('heatmap_head_params'):
    heatmap_head_num_filters = list(kp_config.heatmap_head_params.num_filters)
    heatmap_head_kernel_sizes = list(kp_config.heatmap_head_params.kernel_sizes)
  else:
    heatmap_head_num_filters = [256]
    heatmap_head_kernel_sizes = [3]
  if kp_config.HasField('offset_head_params'):
    offset_head_num_filters = list(kp_config.offset_head_params.num_filters)
    offset_head_kernel_sizes = list(kp_config.offset_head_params.kernel_sizes)
  else:
    offset_head_num_filters = [256]
    offset_head_kernel_sizes = [3]
  if kp_config.HasField('regress_head_params'):
    regress_head_num_filters = list(kp_config.regress_head_params.num_filters)
    regress_head_kernel_sizes = list(
        kp_config.regress_head_params.kernel_sizes)
  else:
    regress_head_num_filters = [256]
    regress_head_kernel_sizes = [3]
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
  return center_net_meta_arch.KeypointEstimationParams(
      task_name=kp_config.task_name,
      class_id=label_map_item.id - CLASS_ID_OFFSET,
      keypoint_indices=keypoint_indices,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      keypoint_labels=keypoint_labels,
      keypoint_std_dev=keypoint_std_dev,
      task_loss_weight=kp_config.task_loss_weight,
      keypoint_regression_loss_weight=kp_config.keypoint_regression_loss_weight,
      keypoint_heatmap_loss_weight=kp_config.keypoint_heatmap_loss_weight,
      keypoint_offset_loss_weight=kp_config.keypoint_offset_loss_weight,
      heatmap_bias_init=kp_config.heatmap_bias_init,
      keypoint_candidate_score_threshold=(
          kp_config.keypoint_candidate_score_threshold),
      num_candidates_per_keypoint=kp_config.num_candidates_per_keypoint,
      peak_max_pool_kernel_size=kp_config.peak_max_pool_kernel_size,
      unmatched_keypoint_score=kp_config.unmatched_keypoint_score,
      box_scale=kp_config.box_scale,
      candidate_search_scale=kp_config.candidate_search_scale,
902
903
      candidate_ranking_mode=kp_config.candidate_ranking_mode,
      offset_peak_radius=kp_config.offset_peak_radius,
904
905
906
      per_keypoint_offset=kp_config.per_keypoint_offset,
      predict_depth=kp_config.predict_depth,
      per_keypoint_depth=kp_config.per_keypoint_depth,
907
908
909
      keypoint_depth_loss_weight=kp_config.keypoint_depth_loss_weight,
      score_distance_offset=kp_config.score_distance_offset,
      clip_out_of_frame_keypoints=kp_config.clip_out_of_frame_keypoints,
910
911
912
913
914
915
916
      rescore_instances=kp_config.rescore_instances,
      heatmap_head_num_filters=heatmap_head_num_filters,
      heatmap_head_kernel_sizes=heatmap_head_kernel_sizes,
      offset_head_num_filters=offset_head_num_filters,
      offset_head_kernel_sizes=offset_head_kernel_sizes,
      regress_head_num_filters=regress_head_num_filters,
      regress_head_kernel_sizes=regress_head_kernel_sizes)
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945


def object_detection_proto_to_params(od_config):
  """Converts CenterNet.ObjectDetection proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy classification loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the classification loss
  # directly.
  loss.classification_loss.weighted_sigmoid.CopyFrom(
      losses_pb2.WeightedSigmoidClassificationLoss())
  loss.localization_loss.CopyFrom(od_config.localization_loss)
  _, localization_loss, _, _, _, _, _ = (losses_builder.build(loss))
  return center_net_meta_arch.ObjectDetectionParams(
      localization_loss=localization_loss,
      scale_loss_weight=od_config.scale_loss_weight,
      offset_loss_weight=od_config.offset_loss_weight,
      task_loss_weight=od_config.task_loss_weight)


def object_center_proto_to_params(oc_config):
  """Converts CenterNet.ObjectCenter proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy localization loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the localization loss
  # directly.
  loss.localization_loss.weighted_l2.CopyFrom(
      losses_pb2.WeightedL2LocalizationLoss())
  loss.classification_loss.CopyFrom(oc_config.classification_loss)
  classification_loss, _, _, _, _, _, _ = (losses_builder.build(loss))
946
947
948
  keypoint_weights_for_center = []
  if oc_config.keypoint_weights_for_center:
    keypoint_weights_for_center = list(oc_config.keypoint_weights_for_center)
949
950
951
952
953
954
955

  if oc_config.center_head_params:
    center_head_num_filters = list(oc_config.center_head_params.num_filters)
    center_head_kernel_sizes = list(oc_config.center_head_params.kernel_sizes)
  else:
    center_head_num_filters = [256]
    center_head_kernel_sizes = [3]
956
957
958
959
960
  return center_net_meta_arch.ObjectCenterParams(
      classification_loss=classification_loss,
      object_center_loss_weight=oc_config.object_center_loss_weight,
      heatmap_bias_init=oc_config.heatmap_bias_init,
      min_box_overlap_iou=oc_config.min_box_overlap_iou,
961
      max_box_predictions=oc_config.max_box_predictions,
962
      use_labeled_classes=oc_config.use_labeled_classes,
963
964
965
      keypoint_weights_for_center=keypoint_weights_for_center,
      center_head_num_filters=center_head_num_filters,
      center_head_kernel_sizes=center_head_kernel_sizes)
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982


def mask_proto_to_params(mask_config):
  """Converts CenterNet.MaskEstimation proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy localization loss to avoid the loss_builder throwing error.
  loss.localization_loss.weighted_l2.CopyFrom(
      losses_pb2.WeightedL2LocalizationLoss())
  loss.classification_loss.CopyFrom(mask_config.classification_loss)
  classification_loss, _, _, _, _, _, _ = (losses_builder.build(loss))
  return center_net_meta_arch.MaskParams(
      classification_loss=classification_loss,
      task_loss_weight=mask_config.task_loss_weight,
      mask_height=mask_config.mask_height,
      mask_width=mask_config.mask_width,
      score_threshold=mask_config.score_threshold,
      heatmap_bias_init=mask_config.heatmap_bias_init)
983
984


985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
def densepose_proto_to_params(densepose_config):
  """Converts CenterNet.DensePoseEstimation proto to parameter namedtuple."""
  classification_loss, localization_loss, _, _, _, _, _ = (
      losses_builder.build(densepose_config.loss))
  return center_net_meta_arch.DensePoseParams(
      class_id=densepose_config.class_id,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      part_loss_weight=densepose_config.part_loss_weight,
      coordinate_loss_weight=densepose_config.coordinate_loss_weight,
      num_parts=densepose_config.num_parts,
      task_loss_weight=densepose_config.task_loss_weight,
      upsample_to_input_res=densepose_config.upsample_to_input_res,
      heatmap_bias_init=densepose_config.heatmap_bias_init)


1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
def tracking_proto_to_params(tracking_config):
  """Converts CenterNet.TrackEstimation proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy localization loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the localization loss
  # directly.
  loss.localization_loss.weighted_l2.CopyFrom(
      losses_pb2.WeightedL2LocalizationLoss())
  loss.classification_loss.CopyFrom(tracking_config.classification_loss)
  classification_loss, _, _, _, _, _, _ = losses_builder.build(loss)
  return center_net_meta_arch.TrackParams(
      num_track_ids=tracking_config.num_track_ids,
      reid_embed_size=tracking_config.reid_embed_size,
      classification_loss=classification_loss,
      num_fc_layers=tracking_config.num_fc_layers,
      task_loss_weight=tracking_config.task_loss_weight)


1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
def temporal_offset_proto_to_params(temporal_offset_config):
  """Converts CenterNet.TemporalOffsetEstimation proto to param-tuple."""
  loss = losses_pb2.Loss()
  # Add dummy classification loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the classification loss
  # directly.
  loss.classification_loss.weighted_sigmoid.CopyFrom(
      losses_pb2.WeightedSigmoidClassificationLoss())
  loss.localization_loss.CopyFrom(temporal_offset_config.localization_loss)
  _, localization_loss, _, _, _, _, _ = losses_builder.build(loss)
  return center_net_meta_arch.TemporalOffsetParams(
      localization_loss=localization_loss,
      task_loss_weight=temporal_offset_config.task_loss_weight)


1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
def _build_center_net_model(center_net_config, is_training, add_summaries):
  """Build a CenterNet detection model.

  Args:
    center_net_config: A CenterNet proto object with model configuration.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.

  Returns:
    CenterNetMetaArch based on the config.

  """

  image_resizer_fn = image_resizer_builder.build(
      center_net_config.image_resizer)
  _check_feature_extractor_exists(center_net_config.feature_extractor.type)
  feature_extractor = _build_center_net_feature_extractor(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1051
      center_net_config.feature_extractor, is_training)
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
  object_center_params = object_center_proto_to_params(
      center_net_config.object_center_params)

  object_detection_params = None
  if center_net_config.HasField('object_detection_task'):
    object_detection_params = object_detection_proto_to_params(
        center_net_config.object_detection_task)

  keypoint_params_dict = None
  if center_net_config.keypoint_estimation_task:
    label_map_proto = label_map_util.load_labelmap(
        center_net_config.keypoint_label_map_path)
    keypoint_map_dict = {
        item.name: item for item in label_map_proto.item if item.keypoints
    }
    keypoint_params_dict = {}
    keypoint_class_id_set = set()
    all_keypoint_indices = []
    for task in center_net_config.keypoint_estimation_task:
      kp_params = keypoint_proto_to_params(task, keypoint_map_dict)
      keypoint_params_dict[task.task_name] = kp_params
      all_keypoint_indices.extend(kp_params.keypoint_indices)
      if kp_params.class_id in keypoint_class_id_set:
        raise ValueError(('Multiple keypoint tasks map to the same class id is '
                          'not allowed: %d' % kp_params.class_id))
      else:
        keypoint_class_id_set.add(kp_params.class_id)
    if len(all_keypoint_indices) > len(set(all_keypoint_indices)):
      raise ValueError('Some keypoint indices are used more than once.')
1081
1082
1083
1084
1085

  mask_params = None
  if center_net_config.HasField('mask_estimation_task'):
    mask_params = mask_proto_to_params(center_net_config.mask_estimation_task)

1086
1087
1088
1089
1090
  densepose_params = None
  if center_net_config.HasField('densepose_estimation_task'):
    densepose_params = densepose_proto_to_params(
        center_net_config.densepose_estimation_task)

1091
1092
1093
1094
1095
  track_params = None
  if center_net_config.HasField('track_estimation_task'):
    track_params = tracking_proto_to_params(
        center_net_config.track_estimation_task)

1096
1097
1098
1099
  temporal_offset_params = None
  if center_net_config.HasField('temporal_offset_task'):
    temporal_offset_params = temporal_offset_proto_to_params(
        center_net_config.temporal_offset_task)
1100
1101
1102
1103
  non_max_suppression_fn = None
  if center_net_config.HasField('post_processing'):
    non_max_suppression_fn, _ = post_processing_builder.build(
        center_net_config.post_processing)
Vighnesh Birodkar's avatar
Vighnesh Birodkar committed
1104

1105
1106
1107
1108
1109
1110
1111
1112
  return center_net_meta_arch.CenterNetMetaArch(
      is_training=is_training,
      add_summaries=add_summaries,
      num_classes=center_net_config.num_classes,
      feature_extractor=feature_extractor,
      image_resizer_fn=image_resizer_fn,
      object_center_params=object_center_params,
      object_detection_params=object_detection_params,
1113
      keypoint_params_dict=keypoint_params_dict,
1114
      mask_params=mask_params,
1115
      densepose_params=densepose_params,
1116
      track_params=track_params,
1117
      temporal_offset_params=temporal_offset_params,
1118
      use_depthwise=center_net_config.use_depthwise,
1119
1120
      compute_heatmap_sparse=center_net_config.compute_heatmap_sparse,
      non_max_suppression_fn=non_max_suppression_fn)
1121
1122


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1123
def _build_center_net_feature_extractor(feature_extractor_config, is_training):
1124
1125
1126
1127
1128
  """Build a CenterNet feature extractor from the given config."""

  if feature_extractor_config.type not in CENTER_NET_EXTRACTOR_FUNCTION_MAP:
    raise ValueError('\'{}\' is not a known CenterNet feature extractor type'
                     .format(feature_extractor_config.type))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1129
1130
1131
1132
1133
1134
  kwargs = {
      'channel_means': list(feature_extractor_config.channel_means),
      'channel_stds': list(feature_extractor_config.channel_stds),
      'bgr_ordering': feature_extractor_config.bgr_ordering,
  }

1135
1136

  return CENTER_NET_EXTRACTOR_FUNCTION_MAP[feature_extractor_config.type](
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1137
      **kwargs)
1138
1139
1140


META_ARCH_BUILDER_MAP = {
1141
1142
    'ssd': _build_ssd_model,
    'faster_rcnn': _build_faster_rcnn_model,
1143
1144
    'experimental_model': _build_experimental_model,
    'center_net': _build_center_net_model
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
}


def build(model_config, is_training, add_summaries=True):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tensorflow summaries in the model graph.
  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')

  meta_architecture = model_config.WhichOneof('model')

1167
  if meta_architecture not in META_ARCH_BUILDER_MAP:
1168
1169
    raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
  else:
1170
    build_func = META_ARCH_BUILDER_MAP[meta_architecture]
1171
1172
    return build_func(getattr(model_config, meta_architecture), is_training,
                      add_summaries)