run_squad.py 4.66 KB
Newer Older
Chen Chen's avatar
Chen Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Run ALBERT on SQuAD 1.1 and SQuAD 2.0 in TF 2.x."""

import json
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
18
19
import os
import time
Chen Chen's avatar
Chen Chen committed
20

Hongkun Yu's avatar
Hongkun Yu committed
21
# Import libraries
Chen Chen's avatar
Chen Chen committed
22
23
from absl import app
from absl import flags
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
from absl import logging
Chen Chen's avatar
Chen Chen committed
25
import tensorflow as tf
26
from official.common import distribute_utils
Chen Chen's avatar
Chen Chen committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from official.nlp.albert import configs as albert_configs
from official.nlp.bert import run_squad_helper
from official.nlp.bert import tokenization
from official.nlp.data import squad_lib_sp

flags.DEFINE_string(
    'sp_model_file', None,
    'The path to the sentence piece model. Used by sentence piece tokenizer '
    'employed by ALBERT.')

# More flags can be found in run_squad_helper.
run_squad_helper.define_common_squad_flags()

FLAGS = flags.FLAGS


def train_squad(strategy,
                input_meta_data,
                custom_callbacks=None,
                run_eagerly=False):
  """Runs bert squad training."""
  bert_config = albert_configs.AlbertConfig.from_json_file(
      FLAGS.bert_config_file)
  run_squad_helper.train_squad(strategy, input_meta_data, bert_config,
                               custom_callbacks, run_eagerly)


def predict_squad(strategy, input_meta_data):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
55
  """Makes predictions for the squad dataset."""
Chen Chen's avatar
Chen Chen committed
56
57
58
59
60
61
62
63
64
  bert_config = albert_configs.AlbertConfig.from_json_file(
      FLAGS.bert_config_file)
  tokenizer = tokenization.FullSentencePieceTokenizer(
      sp_model_file=FLAGS.sp_model_file)

  run_squad_helper.predict_squad(strategy, input_meta_data, tokenizer,
                                 bert_config, squad_lib_sp)


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
65
66
67
68
69
70
71
72
73
74
75
76
def eval_squad(strategy, input_meta_data):
  """Evaluate on the squad dataset."""
  bert_config = albert_configs.AlbertConfig.from_json_file(
      FLAGS.bert_config_file)
  tokenizer = tokenization.FullSentencePieceTokenizer(
      sp_model_file=FLAGS.sp_model_file)

  eval_metrics = run_squad_helper.eval_squad(
      strategy, input_meta_data, tokenizer, bert_config, squad_lib_sp)
  return eval_metrics


Chen Chen's avatar
Chen Chen committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
def export_squad(model_export_path, input_meta_data):
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.

  Raises:
    Export path is not specified, got an empty string or None.
  """
  bert_config = albert_configs.AlbertConfig.from_json_file(
      FLAGS.bert_config_file)
  run_squad_helper.export_squad(model_export_path, input_meta_data, bert_config)


def main(_):
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

  if FLAGS.mode == 'export_only':
    export_squad(FLAGS.model_export_path, input_meta_data)
    return

  # Configures cluster spec for multi-worker distribution strategy.
  if FLAGS.num_gpus > 0:
102
103
    _ = distribute_utils.configure_cluster(FLAGS.worker_hosts, FLAGS.task_index)
  strategy = distribute_utils.get_distribution_strategy(
Chen Chen's avatar
Chen Chen committed
104
105
106
107
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
      all_reduce_alg=FLAGS.all_reduce_alg,
      tpu_address=FLAGS.tpu)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
108
109

  if 'train' in FLAGS.mode:
Chen Chen's avatar
Chen Chen committed
110
    train_squad(strategy, input_meta_data, run_eagerly=FLAGS.run_eagerly)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
111
  if 'predict' in FLAGS.mode:
Chen Chen's avatar
Chen Chen committed
112
    predict_squad(strategy, input_meta_data)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
  if 'eval' in FLAGS.mode:
    eval_metrics = eval_squad(strategy, input_meta_data)
    f1_score = eval_metrics['final_f1']
    logging.info('SQuAD eval F1-score: %f', f1_score)
    summary_dir = os.path.join(FLAGS.model_dir, 'summaries', 'eval')
    summary_writer = tf.summary.create_file_writer(summary_dir)
    with summary_writer.as_default():
      # TODO(lehou): write to the correct step number.
      tf.summary.scalar('F1-score', f1_score, step=0)
      summary_writer.flush()
    # Also write eval_metrics to json file.
    squad_lib_sp.write_to_json_files(
        eval_metrics, os.path.join(summary_dir, 'eval_metrics.json'))
    time.sleep(60)
Chen Chen's avatar
Chen Chen committed
127
128
129
130
131
132


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('model_dir')
  app.run(main)