run_squad.py 4.8 KB
Newer Older
Chen Chen's avatar
Chen Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Run ALBERT on SQuAD 1.1 and SQuAD 2.0 in TF 2.x."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
23
import os
import time
Chen Chen's avatar
Chen Chen committed
24
25
26

from absl import app
from absl import flags
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
from absl import logging
Chen Chen's avatar
Chen Chen committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import tensorflow as tf

from official.nlp.albert import configs as albert_configs
from official.nlp.bert import run_squad_helper
from official.nlp.bert import tokenization
from official.nlp.data import squad_lib_sp
from official.utils.misc import distribution_utils

flags.DEFINE_string(
    'sp_model_file', None,
    'The path to the sentence piece model. Used by sentence piece tokenizer '
    'employed by ALBERT.')

# More flags can be found in run_squad_helper.
run_squad_helper.define_common_squad_flags()

FLAGS = flags.FLAGS


def train_squad(strategy,
                input_meta_data,
                custom_callbacks=None,
                run_eagerly=False):
  """Runs bert squad training."""
  bert_config = albert_configs.AlbertConfig.from_json_file(
      FLAGS.bert_config_file)
  run_squad_helper.train_squad(strategy, input_meta_data, bert_config,
                               custom_callbacks, run_eagerly)


def predict_squad(strategy, input_meta_data):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
59
  """Makes predictions for the squad dataset."""
Chen Chen's avatar
Chen Chen committed
60
61
62
63
64
65
66
67
68
  bert_config = albert_configs.AlbertConfig.from_json_file(
      FLAGS.bert_config_file)
  tokenizer = tokenization.FullSentencePieceTokenizer(
      sp_model_file=FLAGS.sp_model_file)

  run_squad_helper.predict_squad(strategy, input_meta_data, tokenizer,
                                 bert_config, squad_lib_sp)


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
69
70
71
72
73
74
75
76
77
78
79
80
def eval_squad(strategy, input_meta_data):
  """Evaluate on the squad dataset."""
  bert_config = albert_configs.AlbertConfig.from_json_file(
      FLAGS.bert_config_file)
  tokenizer = tokenization.FullSentencePieceTokenizer(
      sp_model_file=FLAGS.sp_model_file)

  eval_metrics = run_squad_helper.eval_squad(
      strategy, input_meta_data, tokenizer, bert_config, squad_lib_sp)
  return eval_metrics


Chen Chen's avatar
Chen Chen committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
def export_squad(model_export_path, input_meta_data):
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.

  Raises:
    Export path is not specified, got an empty string or None.
  """
  bert_config = albert_configs.AlbertConfig.from_json_file(
      FLAGS.bert_config_file)
  run_squad_helper.export_squad(model_export_path, input_meta_data, bert_config)


def main(_):
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

  if FLAGS.mode == 'export_only':
    export_squad(FLAGS.model_export_path, input_meta_data)
    return

  # Configures cluster spec for multi-worker distribution strategy.
  if FLAGS.num_gpus > 0:
    _ = distribution_utils.configure_cluster(FLAGS.worker_hosts,
                                             FLAGS.task_index)
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
      all_reduce_alg=FLAGS.all_reduce_alg,
      tpu_address=FLAGS.tpu)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
113
114

  if 'train' in FLAGS.mode:
Chen Chen's avatar
Chen Chen committed
115
    train_squad(strategy, input_meta_data, run_eagerly=FLAGS.run_eagerly)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
116
  if 'predict' in FLAGS.mode:
Chen Chen's avatar
Chen Chen committed
117
    predict_squad(strategy, input_meta_data)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
  if 'eval' in FLAGS.mode:
    eval_metrics = eval_squad(strategy, input_meta_data)
    f1_score = eval_metrics['final_f1']
    logging.info('SQuAD eval F1-score: %f', f1_score)
    summary_dir = os.path.join(FLAGS.model_dir, 'summaries', 'eval')
    summary_writer = tf.summary.create_file_writer(summary_dir)
    with summary_writer.as_default():
      # TODO(lehou): write to the correct step number.
      tf.summary.scalar('F1-score', f1_score, step=0)
      summary_writer.flush()
    # Also write eval_metrics to json file.
    squad_lib_sp.write_to_json_files(
        eval_metrics, os.path.join(summary_dir, 'eval_metrics.json'))
    time.sleep(60)
Chen Chen's avatar
Chen Chen committed
132
133
134
135
136
137


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('model_dir')
  app.run(main)