run_classifier.py 4.05 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ALBERT classification finetuning runner in tf2.x."""

import json
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
18
import os
Hongkun Yu's avatar
Hongkun Yu committed
19
# Import libraries
20
21
from absl import app
from absl import flags
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
from absl import logging
23
import tensorflow as tf
24
from official.common import distribute_utils
25
from official.nlp.albert import configs as albert_configs
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.nlp.bert import bert_models
27
28
from official.nlp.bert import run_classifier as run_classifier_bert

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
29

30
31
32
FLAGS = flags.FLAGS


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def predict(strategy, albert_config, input_meta_data, predict_input_fn):
  """Function outputs both the ground truth predictions as .tsv files."""
  with strategy.scope():
    classifier_model = bert_models.classifier_model(
        albert_config, input_meta_data['num_labels'])[0]
    checkpoint = tf.train.Checkpoint(model=classifier_model)
    latest_checkpoint_file = (
        FLAGS.predict_checkpoint_path or
        tf.train.latest_checkpoint(FLAGS.model_dir))
    assert latest_checkpoint_file
    logging.info('Checkpoint file %s found and restoring from '
                 'checkpoint', latest_checkpoint_file)
    checkpoint.restore(
        latest_checkpoint_file).assert_existing_objects_matched()
    preds, ground_truth = run_classifier_bert.get_predictions_and_labels(
        strategy, classifier_model, predict_input_fn, return_probs=True)
    output_predict_file = os.path.join(FLAGS.model_dir, 'test_results.tsv')
    with tf.io.gfile.GFile(output_predict_file, 'w') as writer:
      logging.info('***** Predict results *****')
      for probabilities in preds:
        output_line = '\t'.join(
            str(class_probability)
            for class_probability in probabilities) + '\n'
        writer.write(output_line)
    ground_truth_labels_file = os.path.join(FLAGS.model_dir,
                                            'output_labels.tsv')
    with tf.io.gfile.GFile(ground_truth_labels_file, 'w') as writer:
      logging.info('***** Ground truth results *****')
      for label in ground_truth:
        output_line = '\t'.join(str(label)) + '\n'
        writer.write(output_line)
  return


67
68
69
70
71
72
73
def main(_):
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'

74
  strategy = distribute_utils.get_distribution_strategy(
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
  max_seq_length = input_meta_data['max_seq_length']
  train_input_fn = run_classifier_bert.get_dataset_fn(
      FLAGS.train_data_path,
      max_seq_length,
      FLAGS.train_batch_size,
      is_training=True)
  eval_input_fn = run_classifier_bert.get_dataset_fn(
      FLAGS.eval_data_path,
      max_seq_length,
      FLAGS.eval_batch_size,
      is_training=False)

  albert_config = albert_configs.AlbertConfig.from_json_file(
      FLAGS.bert_config_file)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
92
93
94
95
96
97
98
99
  if FLAGS.mode == 'train_and_eval':
    run_classifier_bert.run_bert(strategy, input_meta_data, albert_config,
                                 train_input_fn, eval_input_fn)
  elif FLAGS.mode == 'predict':
    predict(strategy, albert_config, input_meta_data, eval_input_fn)
  else:
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
  return
100
101
102
103
104
105

if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('input_meta_data_path')
  flags.mark_flag_as_required('model_dir')
  app.run(main)