run_classifier.py 4.17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ALBERT classification finetuning runner in tf2.x."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
17

18
19
20
21
22
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
23
import os
Hongkun Yu's avatar
Hongkun Yu committed
24
# Import libraries
25
26
from absl import app
from absl import flags
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
from absl import logging
28
29
30
import tensorflow as tf

from official.nlp.albert import configs as albert_configs
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
31
from official.nlp.bert import bert_models
32
33
34
from official.nlp.bert import run_classifier as run_classifier_bert
from official.utils.misc import distribution_utils

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
35

36
37
38
FLAGS = flags.FLAGS


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def predict(strategy, albert_config, input_meta_data, predict_input_fn):
  """Function outputs both the ground truth predictions as .tsv files."""
  with strategy.scope():
    classifier_model = bert_models.classifier_model(
        albert_config, input_meta_data['num_labels'])[0]
    checkpoint = tf.train.Checkpoint(model=classifier_model)
    latest_checkpoint_file = (
        FLAGS.predict_checkpoint_path or
        tf.train.latest_checkpoint(FLAGS.model_dir))
    assert latest_checkpoint_file
    logging.info('Checkpoint file %s found and restoring from '
                 'checkpoint', latest_checkpoint_file)
    checkpoint.restore(
        latest_checkpoint_file).assert_existing_objects_matched()
    preds, ground_truth = run_classifier_bert.get_predictions_and_labels(
        strategy, classifier_model, predict_input_fn, return_probs=True)
    output_predict_file = os.path.join(FLAGS.model_dir, 'test_results.tsv')
    with tf.io.gfile.GFile(output_predict_file, 'w') as writer:
      logging.info('***** Predict results *****')
      for probabilities in preds:
        output_line = '\t'.join(
            str(class_probability)
            for class_probability in probabilities) + '\n'
        writer.write(output_line)
    ground_truth_labels_file = os.path.join(FLAGS.model_dir,
                                            'output_labels.tsv')
    with tf.io.gfile.GFile(ground_truth_labels_file, 'w') as writer:
      logging.info('***** Ground truth results *****')
      for label in ground_truth:
        output_line = '\t'.join(str(label)) + '\n'
        writer.write(output_line)
  return


73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
def main(_):
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'

  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
  max_seq_length = input_meta_data['max_seq_length']
  train_input_fn = run_classifier_bert.get_dataset_fn(
      FLAGS.train_data_path,
      max_seq_length,
      FLAGS.train_batch_size,
      is_training=True)
  eval_input_fn = run_classifier_bert.get_dataset_fn(
      FLAGS.eval_data_path,
      max_seq_length,
      FLAGS.eval_batch_size,
      is_training=False)

  albert_config = albert_configs.AlbertConfig.from_json_file(
      FLAGS.bert_config_file)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
98
99
100
101
102
103
104
105
  if FLAGS.mode == 'train_and_eval':
    run_classifier_bert.run_bert(strategy, input_meta_data, albert_config,
                                 train_input_fn, eval_input_fn)
  elif FLAGS.mode == 'predict':
    predict(strategy, albert_config, input_meta_data, eval_input_fn)
  else:
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
  return
106
107
108
109
110
111

if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('input_meta_data_path')
  flags.mark_flag_as_required('model_dir')
  app.run(main)