classification_input.py 4.63 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Classification decoder and parser."""
# Import libraries
import tensorflow as tf

from official.vision.beta.dataloaders import decoder
from official.vision.beta.dataloaders import parser
from official.vision.beta.ops import preprocess_ops

MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)


class Decoder(decoder.Decoder):
  """A tf.Example decoder for classification task."""

  def __init__(self):
    self._keys_to_features = {
        'image/encoded': tf.io.FixedLenFeature((), tf.string, default_value=''),
        'image/class/label': (
            tf.io.FixedLenFeature((), tf.int64, default_value=-1))
    }
anivegesana's avatar
anivegesana committed
36

Abdullah Rashwan's avatar
Abdullah Rashwan committed
37
38
39
  def decode(self, serialized_example):
    return tf.io.parse_single_example(
        serialized_example, self._keys_to_features)
anivegesana's avatar
anivegesana committed
40

Abdullah Rashwan's avatar
Abdullah Rashwan committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

class Parser(parser.Parser):
  """Parser to parse an image and its annotations into a dictionary of tensors."""

  def __init__(self,
               output_size,
               num_classes,
               aug_rand_hflip=True,
               dtype='float32'):
    """Initializes parameters for parsing annotations in the dataset.
    Args:
      output_size: `Tenssor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
      num_classes: `float`, number of classes.
      aug_rand_hflip: `bool`, if True, augment training with random
        horizontal flip.
      dtype: `str`, cast output image in dtype. It can be 'float32', 'float16',
        or 'bfloat16'.
    """
    self._output_size = output_size
    self._aug_rand_hflip = aug_rand_hflip
    self._num_classes = num_classes
    if dtype == 'float32':
      self._dtype = tf.float32
    elif dtype == 'float16':
      self._dtype = tf.float16
    elif dtype == 'bfloat16':
      self._dtype = tf.bfloat16
    else:
      raise ValueError('dtype {!r} is not supported!'.format(dtype))

  def _parse_train_data(self, decoded_tensors):
    """Parses data for training."""
    label = tf.cast(decoded_tensors['image/class/label'], dtype=tf.int32)
anivegesana's avatar
anivegesana committed
75

Abdullah Rashwan's avatar
Abdullah Rashwan committed
76
77
    image_bytes = decoded_tensors['image/encoded']
    image_shape = tf.image.extract_jpeg_shape(image_bytes)
anivegesana's avatar
anivegesana committed
78

Abdullah Rashwan's avatar
Abdullah Rashwan committed
79
80
81
82
83
84
85
86
    # Crops image.
    # TODO(pengchong): support image format other than JPEG.
    cropped_image = preprocess_ops.random_crop_image_v2(
        image_bytes, image_shape)
    image = tf.cond(
        tf.reduce_all(tf.equal(tf.shape(cropped_image), image_shape)),
        lambda: preprocess_ops.center_crop_image_v2(image_bytes, image_shape),
        lambda: cropped_image)
anivegesana's avatar
anivegesana committed
87

Abdullah Rashwan's avatar
Abdullah Rashwan committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    if self._aug_rand_hflip:
      image = tf.image.random_flip_left_right(image)

    # Resizes image.
    image = tf.image.resize(
        image, self._output_size, method=tf.image.ResizeMethod.BILINEAR)

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)

    # Convert image to self._dtype.
    image = tf.image.convert_image_dtype(image, self._dtype)

    return image, label

  def _parse_eval_data(self, decoded_tensors):
    """Parses data for evaluation."""
    label = tf.cast(decoded_tensors['image/class/label'], dtype=tf.int32)
    image_bytes = decoded_tensors['image/encoded']
    image_shape = tf.image.extract_jpeg_shape(image_bytes)
anivegesana's avatar
anivegesana committed
110

Abdullah Rashwan's avatar
Abdullah Rashwan committed
111
112
    # Center crops and resizes image.
    image = preprocess_ops.center_crop_image_v2(image_bytes, image_shape)
anivegesana's avatar
anivegesana committed
113

Abdullah Rashwan's avatar
Abdullah Rashwan committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    image = tf.image.resize(
        image, self._output_size, method=tf.image.ResizeMethod.BILINEAR)

    image = tf.reshape(image, [self._output_size[0], self._output_size[1], 3])

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)

    # Convert image to self._dtype.
    image = tf.image.convert_image_dtype(image, self._dtype)

    return image, label