Commit cae2622b authored by anivegesana's avatar anivegesana
Browse files

Revert changes to decoder

parent 4704ae7d
...@@ -33,13 +33,11 @@ class Decoder(decoder.Decoder): ...@@ -33,13 +33,11 @@ class Decoder(decoder.Decoder):
'image/class/label': ( 'image/class/label': (
tf.io.FixedLenFeature((), tf.int64, default_value=-1)) tf.io.FixedLenFeature((), tf.int64, default_value=-1))
} }
'''
def decode(self, serialized_example): def decode(self, serialized_example):
return tf.io.parse_single_example( return tf.io.parse_single_example(
serialized_example, self._keys_to_features) serialized_example, self._keys_to_features)
'''
def decode(self, data):
return {'image/encoded': data['image'], 'image/class/label': data['label']}
class Parser(parser.Parser): class Parser(parser.Parser):
"""Parser to parse an image and its annotations into a dictionary of tensors.""" """Parser to parse an image and its annotations into a dictionary of tensors."""
...@@ -50,7 +48,6 @@ class Parser(parser.Parser): ...@@ -50,7 +48,6 @@ class Parser(parser.Parser):
aug_rand_hflip=True, aug_rand_hflip=True,
dtype='float32'): dtype='float32'):
"""Initializes parameters for parsing annotations in the dataset. """Initializes parameters for parsing annotations in the dataset.
Args: Args:
output_size: `Tenssor` or `list` for [height, width] of output image. The output_size: `Tenssor` or `list` for [height, width] of output image. The
output_size should be divided by the largest feature stride 2^max_level. output_size should be divided by the largest feature stride 2^max_level.
...@@ -74,11 +71,11 @@ class Parser(parser.Parser): ...@@ -74,11 +71,11 @@ class Parser(parser.Parser):
def _parse_train_data(self, decoded_tensors): def _parse_train_data(self, decoded_tensors):
"""Parses data for training.""" """Parses data for training."""
label = tf.cast(decoded_tensors['image/class/label'], dtype=tf.int32) label = tf.cast(decoded_tensors['image/class/label'], dtype=tf.int32)
'''
image_bytes = decoded_tensors['image/encoded'] image_bytes = decoded_tensors['image/encoded']
image_shape = tf.image.extract_jpeg_shape(image_bytes) image_shape = tf.image.extract_jpeg_shape(image_bytes)
# Crops image. # Crops image.
# TODO(pengchong): support image format other than JPEG. # TODO(pengchong): support image format other than JPEG.
cropped_image = preprocess_ops.random_crop_image_v2( cropped_image = preprocess_ops.random_crop_image_v2(
...@@ -87,8 +84,7 @@ class Parser(parser.Parser): ...@@ -87,8 +84,7 @@ class Parser(parser.Parser):
tf.reduce_all(tf.equal(tf.shape(cropped_image), image_shape)), tf.reduce_all(tf.equal(tf.shape(cropped_image), image_shape)),
lambda: preprocess_ops.center_crop_image_v2(image_bytes, image_shape), lambda: preprocess_ops.center_crop_image_v2(image_bytes, image_shape),
lambda: cropped_image) lambda: cropped_image)
'''
image = tf.cast(decoded_tensors['image/encoded'], tf.float32)
if self._aug_rand_hflip: if self._aug_rand_hflip:
image = tf.image.random_flip_left_right(image) image = tf.image.random_flip_left_right(image)
...@@ -109,14 +105,12 @@ class Parser(parser.Parser): ...@@ -109,14 +105,12 @@ class Parser(parser.Parser):
def _parse_eval_data(self, decoded_tensors): def _parse_eval_data(self, decoded_tensors):
"""Parses data for evaluation.""" """Parses data for evaluation."""
label = tf.cast(decoded_tensors['image/class/label'], dtype=tf.int32) label = tf.cast(decoded_tensors['image/class/label'], dtype=tf.int32)
'''
image_bytes = decoded_tensors['image/encoded'] image_bytes = decoded_tensors['image/encoded']
image_shape = tf.image.extract_jpeg_shape(image_bytes) image_shape = tf.image.extract_jpeg_shape(image_bytes)
# Center crops and resizes image. # Center crops and resizes image.
image = preprocess_ops.center_crop_image_v2(image_bytes, image_shape) image = preprocess_ops.center_crop_image_v2(image_bytes, image_shape)
'''
image = tf.cast(decoded_tensors['image/encoded'], tf.float32)
image = tf.image.resize( image = tf.image.resize(
image, self._output_size, method=tf.image.ResizeMethod.BILINEAR) image, self._output_size, method=tf.image.ResizeMethod.BILINEAR)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment