retinanet.py 10.8 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""RetinaNet task definition."""

from absl import logging
import tensorflow as tf
from official.core import base_task
from official.core import input_reader
from official.core import task_factory
Zhenyu Tan's avatar
Zhenyu Tan committed
23
from official.vision import keras_cv
Abdullah Rashwan's avatar
Abdullah Rashwan committed
24
25
26
from official.vision.beta.configs import retinanet as exp_cfg
from official.vision.beta.dataloaders import retinanet_input
from official.vision.beta.dataloaders import tf_example_decoder
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
from official.vision.beta.dataloaders import dataset_fn
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from official.vision.beta.dataloaders import tf_example_label_map_decoder
from official.vision.beta.evaluation import coco_evaluator
from official.vision.beta.modeling import factory


@task_factory.register_task_cls(exp_cfg.RetinaNetTask)
class RetinaNetTask(base_task.Task):
  """A single-replica view of training procedure.

  RetinaNet task provides artifacts for training/evalution procedures, including
  loading/iterating over Datasets, initializing the model, calculating the loss,
  post-processing, and customized metrics with reduction.
  """

  def build_model(self):
    """Build RetinaNet model."""

    input_specs = tf.keras.layers.InputSpec(
        shape=[None] + self.task_config.model.input_size)

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf.keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

    model = factory.build_retinanet(
        input_specs=input_specs,
        model_config=self.task_config.model,
        l2_regularizer=l2_regularizer)
    return model

  def initialize(self, model: tf.keras.Model):
    """Loading pretrained checkpoint."""
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
73
      status = ckpt.restore(ckpt_dir_or_file)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
74
75
76
      status.assert_consumed()
    elif self.task_config.init_checkpoint_modules == 'backbone':
      ckpt = tf.train.Checkpoint(backbone=model.backbone)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
77
      status = ckpt.restore(ckpt_dir_or_file)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
      status.expect_partial().assert_existing_objects_matched()
    else:
      assert "Only 'all' or 'backbone' can be used to initialize the model."

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

  def build_inputs(self, params, input_context=None):
    """Build input dataset."""
    decoder_cfg = params.decoder.get()
    if params.decoder.type == 'simple_decoder':
      decoder = tf_example_decoder.TfExampleDecoder(
          regenerate_source_id=decoder_cfg.regenerate_source_id)
    elif params.decoder.type == 'label_map_decoder':
      decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap(
          label_map=decoder_cfg.label_map,
          regenerate_source_id=decoder_cfg.regenerate_source_id)
    else:
      raise ValueError('Unknown decoder type: {}!'.format(params.decoder.type))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
97

Abdullah Rashwan's avatar
Abdullah Rashwan committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    parser = retinanet_input.Parser(
        output_size=self.task_config.model.input_size[:2],
        min_level=self.task_config.model.min_level,
        max_level=self.task_config.model.max_level,
        num_scales=self.task_config.model.anchor.num_scales,
        aspect_ratios=self.task_config.model.anchor.aspect_ratios,
        anchor_size=self.task_config.model.anchor.anchor_size,
        dtype=params.dtype,
        match_threshold=params.parser.match_threshold,
        unmatched_threshold=params.parser.unmatched_threshold,
        aug_rand_hflip=params.parser.aug_rand_hflip,
        aug_scale_min=params.parser.aug_scale_min,
        aug_scale_max=params.parser.aug_scale_max,
        skip_crowd_during_training=params.parser.skip_crowd_during_training,
        max_num_instances=params.parser.max_num_instances)

    reader = input_reader.InputReader(
        params,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
116
        dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
117
118
119
120
121
122
123
124
125
        decoder_fn=decoder.decode,
        parser_fn=parser.parse_fn(params.is_training))
    dataset = reader.read(input_context=input_context)

    return dataset

  def build_losses(self, outputs, labels, aux_losses=None):
    """Build RetinaNet losses."""
    params = self.task_config
Zhenyu Tan's avatar
Zhenyu Tan committed
126
    cls_loss_fn = keras_cv.losses.FocalLoss(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
127
128
129
        alpha=params.losses.focal_loss_alpha,
        gamma=params.losses.focal_loss_gamma,
        reduction=tf.keras.losses.Reduction.SUM)
Zhenyu Tan's avatar
Zhenyu Tan committed
130
    box_loss_fn = tf.keras.losses.Huber(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
131
132
133
134
135
136
137
138
139
        params.losses.huber_loss_delta, reduction=tf.keras.losses.Reduction.SUM)

    # Sums all positives in a batch for normalization and avoids zero
    # num_positives_sum, which would lead to inf loss during training
    cls_sample_weight = labels['cls_weights']
    box_sample_weight = labels['box_weights']
    num_positives = tf.reduce_sum(box_sample_weight) + 1.0
    cls_sample_weight = cls_sample_weight / num_positives
    box_sample_weight = box_sample_weight / num_positives
Zhenyu Tan's avatar
Zhenyu Tan committed
140
    y_true_cls = keras_cv.losses.multi_level_flatten(
Zhenyu Tan's avatar
Zhenyu Tan committed
141
142
        labels['cls_targets'], last_dim=None)
    y_true_cls = tf.one_hot(y_true_cls, params.model.num_classes)
Zhenyu Tan's avatar
Zhenyu Tan committed
143
    y_pred_cls = keras_cv.losses.multi_level_flatten(
Zhenyu Tan's avatar
Zhenyu Tan committed
144
        outputs['cls_outputs'], last_dim=params.model.num_classes)
Zhenyu Tan's avatar
Zhenyu Tan committed
145
    y_true_box = keras_cv.losses.multi_level_flatten(
Zhenyu Tan's avatar
Zhenyu Tan committed
146
        labels['box_targets'], last_dim=4)
Zhenyu Tan's avatar
Zhenyu Tan committed
147
    y_pred_box = keras_cv.losses.multi_level_flatten(
Zhenyu Tan's avatar
Zhenyu Tan committed
148
149
        outputs['box_outputs'], last_dim=4)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
150
    cls_loss = cls_loss_fn(
Zhenyu Tan's avatar
Zhenyu Tan committed
151
        y_true=y_true_cls, y_pred=y_pred_cls, sample_weight=cls_sample_weight)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
152
    box_loss = box_loss_fn(
Zhenyu Tan's avatar
Zhenyu Tan committed
153
        y_true=y_true_box, y_pred=y_pred_box, sample_weight=box_sample_weight)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

    model_loss = cls_loss + params.losses.box_loss_weight * box_loss

    total_loss = model_loss
    if aux_losses:
      reg_loss = tf.reduce_sum(aux_losses)
      total_loss = model_loss + reg_loss

    return total_loss, cls_loss, box_loss, model_loss

  def build_metrics(self, training=True):
    """Build detection metrics."""
    metrics = []
    metric_names = ['total_loss', 'cls_loss', 'box_loss', 'model_loss']
    for name in metric_names:
      metrics.append(tf.keras.metrics.Mean(name, dtype=tf.float32))

    if not training:
      self.coco_metric = coco_evaluator.COCOEvaluator(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
173
174
175
          annotation_file=self._task_config.annotation_file,
          include_mask=False,
          per_category_metrics=self._task_config.per_category_metrics)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

    return metrics

  def train_step(self, inputs, model, optimizer, metrics=None):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      loss, cls_loss, box_loss, model_loss = self.build_losses(
          outputs=outputs, labels=labels, aux_losses=model.losses)
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
205
      if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
206
207
208
209
210
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient when LossScaleOptimizer is used.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
211
    if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: loss}

    all_losses = {
        'total_loss': loss,
        'cls_loss': cls_loss,
        'box_loss': box_loss,
        'model_loss': model_loss,
    }
    if metrics:
      for m in metrics:
        m.update_state(all_losses[m.name])
        logs.update({m.name: m.result()})

    return logs

  def validation_step(self, inputs, model, metrics=None):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs

    outputs = model(features, anchor_boxes=labels['anchor_boxes'],
                    image_shape=labels['image_info'][:, 1, :],
                    training=False)
    loss, cls_loss, box_loss, model_loss = self.build_losses(
        outputs=outputs, labels=labels, aux_losses=model.losses)
    logs = {self.loss: loss}

    all_losses = {
        'total_loss': loss,
        'cls_loss': cls_loss,
        'box_loss': box_loss,
        'model_loss': model_loss,
    }

    coco_model_outputs = {
        'detection_boxes': outputs['detection_boxes'],
        'detection_scores': outputs['detection_scores'],
        'detection_classes': outputs['detection_classes'],
        'num_detections': outputs['num_detections'],
        'source_id': labels['groundtruths']['source_id'],
        'image_info': labels['image_info']
    }
    logs.update({self.coco_metric.name: (labels['groundtruths'],
                                         coco_model_outputs)})
    if metrics:
      for m in metrics:
        m.update_state(all_losses[m.name])
        logs.update({m.name: m.result()})
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
    if state is None:
      self.coco_metric.reset_states()
      state = self.coco_metric
    self.coco_metric.update_state(step_outputs[self.coco_metric.name][0],
                                  step_outputs[self.coco_metric.name][1])
    return state

  def reduce_aggregated_logs(self, aggregated_logs):
    return self.coco_metric.result()