retinanet.py 11.3 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""RetinaNet task definition."""

from absl import logging
import tensorflow as tf
from official.core import base_task
from official.core import input_reader
from official.core import task_factory
Zhenyu Tan's avatar
Zhenyu Tan committed
23
from official.vision import keras_cv
Abdullah Rashwan's avatar
Abdullah Rashwan committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from official.vision.beta.configs import retinanet as exp_cfg
from official.vision.beta.dataloaders import retinanet_input
from official.vision.beta.dataloaders import tf_example_decoder
from official.vision.beta.dataloaders import tf_example_label_map_decoder
from official.vision.beta.evaluation import coco_evaluator
from official.vision.beta.modeling import factory


@task_factory.register_task_cls(exp_cfg.RetinaNetTask)
class RetinaNetTask(base_task.Task):
  """A single-replica view of training procedure.

  RetinaNet task provides artifacts for training/evalution procedures, including
  loading/iterating over Datasets, initializing the model, calculating the loss,
  post-processing, and customized metrics with reduction.
  """

  def build_model(self):
    """Build RetinaNet model."""

    input_specs = tf.keras.layers.InputSpec(
        shape=[None] + self.task_config.model.input_size)

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf.keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

    model = factory.build_retinanet(
        input_specs=input_specs,
        model_config=self.task_config.model,
        l2_regularizer=l2_regularizer)
    return model

  def initialize(self, model: tf.keras.Model):
    """Loading pretrained checkpoint."""
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
      status = ckpt.read(ckpt_dir_or_file)
      status.assert_consumed()
    elif self.task_config.init_checkpoint_modules == 'backbone':
      ckpt = tf.train.Checkpoint(backbone=model.backbone)
      status = ckpt.read(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
    else:
      assert "Only 'all' or 'backbone' can be used to initialize the model."

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

  def build_inputs(self, params, input_context=None):
    """Build input dataset."""
    decoder_cfg = params.decoder.get()
    if params.decoder.type == 'simple_decoder':
      decoder = tf_example_decoder.TfExampleDecoder(
          regenerate_source_id=decoder_cfg.regenerate_source_id)
    elif params.decoder.type == 'label_map_decoder':
      decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap(
          label_map=decoder_cfg.label_map,
          regenerate_source_id=decoder_cfg.regenerate_source_id)
    else:
      raise ValueError('Unknown decoder type: {}!'.format(params.decoder.type))
    decoder_cfg = params.decoder.get()
    if params.decoder.type == 'simple_decoder':
      decoder = tf_example_decoder.TfExampleDecoder(
          regenerate_source_id=decoder_cfg.regenerate_source_id)
    elif params.decoder.type == 'label_map_decoder':
      decoder = tf_example_decoder.TfExampleDecoderLabelMap(
          label_map=decoder_cfg.label_map,
          regenerate_source_id=decoder_cfg.regenerate_source_id)
    else:
      raise ValueError('Unknown decoder type: {}!'.format(params.decoder.type))
    parser = retinanet_input.Parser(
        output_size=self.task_config.model.input_size[:2],
        min_level=self.task_config.model.min_level,
        max_level=self.task_config.model.max_level,
        num_scales=self.task_config.model.anchor.num_scales,
        aspect_ratios=self.task_config.model.anchor.aspect_ratios,
        anchor_size=self.task_config.model.anchor.anchor_size,
        dtype=params.dtype,
        match_threshold=params.parser.match_threshold,
        unmatched_threshold=params.parser.unmatched_threshold,
        aug_rand_hflip=params.parser.aug_rand_hflip,
        aug_scale_min=params.parser.aug_scale_min,
        aug_scale_max=params.parser.aug_scale_max,
        skip_crowd_during_training=params.parser.skip_crowd_during_training,
        max_num_instances=params.parser.max_num_instances)

    reader = input_reader.InputReader(
        params,
        dataset_fn=tf.data.TFRecordDataset,
        decoder_fn=decoder.decode,
        parser_fn=parser.parse_fn(params.is_training))
    dataset = reader.read(input_context=input_context)

    return dataset

  def build_losses(self, outputs, labels, aux_losses=None):
    """Build RetinaNet losses."""
    params = self.task_config
Zhenyu Tan's avatar
Zhenyu Tan committed
134
    cls_loss_fn = keras_cv.FocalLoss(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
135
136
137
        alpha=params.losses.focal_loss_alpha,
        gamma=params.losses.focal_loss_gamma,
        reduction=tf.keras.losses.Reduction.SUM)
Zhenyu Tan's avatar
Zhenyu Tan committed
138
    box_loss_fn = tf.keras.losses.Huber(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
139
140
141
142
143
144
145
146
147
        params.losses.huber_loss_delta, reduction=tf.keras.losses.Reduction.SUM)

    # Sums all positives in a batch for normalization and avoids zero
    # num_positives_sum, which would lead to inf loss during training
    cls_sample_weight = labels['cls_weights']
    box_sample_weight = labels['box_weights']
    num_positives = tf.reduce_sum(box_sample_weight) + 1.0
    cls_sample_weight = cls_sample_weight / num_positives
    box_sample_weight = box_sample_weight / num_positives
Zhenyu Tan's avatar
Zhenyu Tan committed
148
149
150
151
152
153
154
155
156
157
    y_true_cls = keras_cv.multi_level_flatten(
        labels['cls_targets'], last_dim=None)
    y_true_cls = tf.one_hot(y_true_cls, params.model.num_classes)
    y_pred_cls = keras_cv.multi_level_flatten(
        outputs['cls_outputs'], last_dim=params.model.num_classes)
    y_true_box = keras_cv.multi_level_flatten(
        labels['box_targets'], last_dim=4)
    y_pred_box = keras_cv.multi_level_flatten(
        outputs['box_outputs'], last_dim=4)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
158
    cls_loss = cls_loss_fn(
Zhenyu Tan's avatar
Zhenyu Tan committed
159
        y_true=y_true_cls, y_pred=y_pred_cls, sample_weight=cls_sample_weight)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
160
    box_loss = box_loss_fn(
Zhenyu Tan's avatar
Zhenyu Tan committed
161
        y_true=y_true_box, y_pred=y_pred_box, sample_weight=box_sample_weight)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

    model_loss = cls_loss + params.losses.box_loss_weight * box_loss

    total_loss = model_loss
    if aux_losses:
      reg_loss = tf.reduce_sum(aux_losses)
      total_loss = model_loss + reg_loss

    return total_loss, cls_loss, box_loss, model_loss

  def build_metrics(self, training=True):
    """Build detection metrics."""
    metrics = []
    metric_names = ['total_loss', 'cls_loss', 'box_loss', 'model_loss']
    for name in metric_names:
      metrics.append(tf.keras.metrics.Mean(name, dtype=tf.float32))

    if not training:
      self.coco_metric = coco_evaluator.COCOEvaluator(
          annotation_file=None, include_mask=False)

    return metrics

  def train_step(self, inputs, model, optimizer, metrics=None):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      loss, cls_loss, box_loss, model_loss = self.build_losses(
          outputs=outputs, labels=labels, aux_losses=model.losses)
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(
          optimizer, tf.keras.mixed_precision.experimental.LossScaleOptimizer):
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient when LossScaleOptimizer is used.
    if isinstance(
        optimizer, tf.keras.mixed_precision.experimental.LossScaleOptimizer):
      grads = optimizer.get_unscaled_gradients(grads)

    # Apply gradient clipping.
    if self.task_config.gradient_clip_norm > 0:
      grads, _ = tf.clip_by_global_norm(
          grads, self.task_config.gradient_clip_norm)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: loss}

    all_losses = {
        'total_loss': loss,
        'cls_loss': cls_loss,
        'box_loss': box_loss,
        'model_loss': model_loss,
    }
    if metrics:
      for m in metrics:
        m.update_state(all_losses[m.name])
        logs.update({m.name: m.result()})

    return logs

  def validation_step(self, inputs, model, metrics=None):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs

    outputs = model(features, anchor_boxes=labels['anchor_boxes'],
                    image_shape=labels['image_info'][:, 1, :],
                    training=False)
    loss, cls_loss, box_loss, model_loss = self.build_losses(
        outputs=outputs, labels=labels, aux_losses=model.losses)
    logs = {self.loss: loss}

    all_losses = {
        'total_loss': loss,
        'cls_loss': cls_loss,
        'box_loss': box_loss,
        'model_loss': model_loss,
    }

    coco_model_outputs = {
        'detection_boxes': outputs['detection_boxes'],
        'detection_scores': outputs['detection_scores'],
        'detection_classes': outputs['detection_classes'],
        'num_detections': outputs['num_detections'],
        'source_id': labels['groundtruths']['source_id'],
        'image_info': labels['image_info']
    }
    logs.update({self.coco_metric.name: (labels['groundtruths'],
                                         coco_model_outputs)})
    if metrics:
      for m in metrics:
        m.update_state(all_losses[m.name])
        logs.update({m.name: m.result()})
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
    if state is None:
      self.coco_metric.reset_states()
      state = self.coco_metric
    self.coco_metric.update_state(step_outputs[self.coco_metric.name][0],
                                  step_outputs[self.coco_metric.name][1])
    return state

  def reduce_aggregated_logs(self, aggregated_logs):
    return self.coco_metric.result()