video_classification.py 11.1 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Yeqing Li's avatar
Yeqing Li committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Yeqing Li's avatar
Yeqing Li committed
15
"""Video classification task definition."""
Fan Yang's avatar
Fan Yang committed
16
17
from typing import Any, Optional, List, Tuple

18
from absl import logging
Yeqing Li's avatar
Yeqing Li committed
19
20
21
22
23
import tensorflow as tf
from official.core import base_task
from official.core import task_factory
from official.modeling import tf_utils
from official.vision.beta.configs import video_classification as exp_cfg
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
from official.vision.beta.dataloaders import input_reader_factory
Yeqing Li's avatar
Yeqing Li committed
25
from official.vision.beta.dataloaders import video_input
Yeqing Li's avatar
Yeqing Li committed
26
from official.vision.beta.modeling import factory_3d
Yeqing Li's avatar
Yeqing Li committed
27
28
29
30
31
32
33
34


@task_factory.register_task_cls(exp_cfg.VideoClassificationTask)
class VideoClassificationTask(base_task.Task):
  """A task for video classification."""

  def build_model(self):
    """Builds video classification model."""
35
36
37
38
39
40
41
    common_input_shape = [
        d1 if d1 == d2 else None
        for d1, d2 in zip(self.task_config.train_data.feature_shape,
                          self.task_config.validation_data.feature_shape)
    ]
    input_specs = tf.keras.layers.InputSpec(shape=[None] + common_input_shape)
    logging.info('Build model input %r', common_input_shape)
Yeqing Li's avatar
Yeqing Li committed
42
43
44
45
46
47
48
49

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf.keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

Yeqing Li's avatar
Yeqing Li committed
50
51
    model = factory_3d.build_model(
        self.task_config.model.model_type,
Yeqing Li's avatar
Yeqing Li committed
52
53
54
55
56
57
        input_specs=input_specs,
        model_config=self.task_config.model,
        num_classes=self.task_config.train_data.num_classes,
        l2_regularizer=l2_regularizer)
    return model

Yeqing Li's avatar
Yeqing Li committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
  def _get_dataset_fn(self, params):
    if params.file_type == 'tfrecord':
      return tf.data.TFRecordDataset
    else:
      raise ValueError('Unknown input file type {!r}'.format(params.file_type))

  def _get_decoder_fn(self, params):
    decoder = video_input.Decoder()
    if self.task_config.train_data.output_audio:
      assert self.task_config.train_data.audio_feature, 'audio feature is empty'
      decoder.add_feature(self.task_config.train_data.audio_feature,
                          tf.io.VarLenFeature(dtype=tf.float32))
    return decoder.decode

Fan Yang's avatar
Fan Yang committed
72
73
74
  def build_inputs(self,
                   params: exp_cfg.DataConfig,
                   input_context: Optional[tf.distribute.InputContext] = None):
Yeqing Li's avatar
Yeqing Li committed
75
76
77
78
79
    """Builds classification input."""

    parser = video_input.Parser(input_params=params)
    postprocess_fn = video_input.PostBatchProcessor(params)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
80
    reader = input_reader_factory.input_reader_generator(
Yeqing Li's avatar
Yeqing Li committed
81
        params,
Yeqing Li's avatar
Yeqing Li committed
82
83
        dataset_fn=self._get_dataset_fn(params),
        decoder_fn=self._get_decoder_fn(params),
Yeqing Li's avatar
Yeqing Li committed
84
85
86
87
88
89
90
        parser_fn=parser.parse_fn(params.is_training),
        postprocess_fn=postprocess_fn)

    dataset = reader.read(input_context=input_context)

    return dataset

Fan Yang's avatar
Fan Yang committed
91
92
93
94
  def build_losses(self,
                   labels: Any,
                   model_outputs: Any,
                   aux_losses: Optional[Any] = None):
Yeqing Li's avatar
Yeqing Li committed
95
96
97
98
99
100
101
102
103
104
    """Sparse categorical cross entropy loss.

    Args:
      labels: labels.
      model_outputs: Output logits of the classifier.
      aux_losses: auxiliarly loss tensors, i.e. `losses` in keras.Model.

    Returns:
      The total loss tensor.
    """
Yeqing Li's avatar
Yeqing Li committed
105
    all_losses = {}
Yeqing Li's avatar
Yeqing Li committed
106
    losses_config = self.task_config.losses
Yeqing Li's avatar
Yeqing Li committed
107
108
109
110
111
112
113
114
115
116
    total_loss = None
    if self.task_config.train_data.is_multilabel:
      entropy = -tf.reduce_mean(
          tf.reduce_sum(model_outputs * tf.math.log(model_outputs + 1e-8), -1))
      total_loss = tf.keras.losses.binary_crossentropy(
          labels, model_outputs, from_logits=False)
      all_losses.update({
          'class_loss': total_loss,
          'entropy': entropy,
      })
Yeqing Li's avatar
Yeqing Li committed
117
    else:
Yeqing Li's avatar
Yeqing Li committed
118
119
120
121
122
123
124
125
126
      if losses_config.one_hot:
        total_loss = tf.keras.losses.categorical_crossentropy(
            labels,
            model_outputs,
            from_logits=False,
            label_smoothing=losses_config.label_smoothing)
      else:
        total_loss = tf.keras.losses.sparse_categorical_crossentropy(
            labels, model_outputs, from_logits=False)
Yeqing Li's avatar
Yeqing Li committed
127

Yeqing Li's avatar
Yeqing Li committed
128
129
130
131
      total_loss = tf_utils.safe_mean(total_loss)
      all_losses.update({
          'class_loss': total_loss,
      })
Yeqing Li's avatar
Yeqing Li committed
132
    if aux_losses:
Yeqing Li's avatar
Yeqing Li committed
133
134
135
      all_losses.update({
          'reg_loss': aux_losses,
      })
Yeqing Li's avatar
Yeqing Li committed
136
      total_loss += tf.add_n(aux_losses)
Yeqing Li's avatar
Yeqing Li committed
137
    all_losses[self.loss] = total_loss
Yeqing Li's avatar
Yeqing Li committed
138

Yeqing Li's avatar
Yeqing Li committed
139
    return all_losses
Yeqing Li's avatar
Yeqing Li committed
140

Fan Yang's avatar
Fan Yang committed
141
  def build_metrics(self, training: bool = True):
Yeqing Li's avatar
Yeqing Li committed
142
143
144
145
146
147
148
    """Gets streaming metrics for training/validation."""
    if self.task_config.losses.one_hot:
      metrics = [
          tf.keras.metrics.CategoricalAccuracy(name='accuracy'),
          tf.keras.metrics.TopKCategoricalAccuracy(k=1, name='top_1_accuracy'),
          tf.keras.metrics.TopKCategoricalAccuracy(k=5, name='top_5_accuracy')
      ]
Yeqing Li's avatar
Yeqing Li committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
      if self.task_config.train_data.is_multilabel:
        metrics.append(
            tf.keras.metrics.AUC(
                curve='ROC',
                multi_label=self.task_config.train_data.is_multilabel,
                name='ROC-AUC'))
        metrics.append(
            tf.keras.metrics.RecallAtPrecision(
                0.95, name='RecallAtPrecision95'))
        metrics.append(
            tf.keras.metrics.AUC(
                curve='PR',
                multi_label=self.task_config.train_data.is_multilabel,
                name='PR-AUC'))
Yeqing Li's avatar
Yeqing Li committed
163
164
165
166
        if self.task_config.metrics.use_per_class_recall:
          for i in range(self.task_config.train_data.num_classes):
            metrics.append(
                tf.keras.metrics.Recall(class_id=i, name=f'recall-{i}'))
Yeqing Li's avatar
Yeqing Li committed
167
168
169
170
171
172
173
174
175
176
    else:
      metrics = [
          tf.keras.metrics.SparseCategoricalAccuracy(name='accuracy'),
          tf.keras.metrics.SparseTopKCategoricalAccuracy(
              k=1, name='top_1_accuracy'),
          tf.keras.metrics.SparseTopKCategoricalAccuracy(
              k=5, name='top_5_accuracy')
      ]
    return metrics

Fan Yang's avatar
Fan Yang committed
177
178
  def process_metrics(self, metrics: List[Any], labels: Any,
                      model_outputs: Any):
Yeqing Li's avatar
Yeqing Li committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    """Process and update metrics.

    Called when using custom training loop API.

    Args:
      metrics: a nested structure of metrics objects. The return of function
        self.build_metrics.
      labels: a tensor or a nested structure of tensors.
      model_outputs: a tensor or a nested structure of tensors. For example,
        output of the keras model built by self.build_model.
    """
    for metric in metrics:
      metric.update_state(labels, model_outputs)

Fan Yang's avatar
Fan Yang committed
193
194
195
196
197
  def train_step(self,
                 inputs: Tuple[Any, Any],
                 model: tf.keras.Model,
                 optimizer: tf.keras.optimizers.Optimizer,
                 metrics: Optional[List[Any]] = None):
Yeqing Li's avatar
Yeqing Li committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs

    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
Yeqing Li's avatar
Yeqing Li committed
213
      outputs = model(features, training=True)
Yeqing Li's avatar
Yeqing Li committed
214
215
216
217
218
219
      # Casting output layer as float32 is necessary when mixed_precision is
      # mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
Yeqing Li's avatar
Yeqing Li committed
220
221
222
223
224
      if self.task_config.train_data.is_multilabel:
        outputs = tf.math.sigmoid(outputs)
      else:
        outputs = tf.math.softmax(outputs)
      all_losses = self.build_losses(
Yeqing Li's avatar
Yeqing Li committed
225
          model_outputs=outputs, labels=labels, aux_losses=model.losses)
Yeqing Li's avatar
Yeqing Li committed
226
      loss = all_losses[self.loss]
Yeqing Li's avatar
Yeqing Li committed
227
228
229
230
231
232
233
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(
Pankaj Kanwar's avatar
Pankaj Kanwar committed
234
          optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Yeqing Li's avatar
Yeqing Li committed
235
236
237
238
239
240
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient before apply_gradients when LossScaleOptimizer is
    # used.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
241
    if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Yeqing Li's avatar
Yeqing Li committed
242
243
244
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

Yeqing Li's avatar
Yeqing Li committed
245
    logs = all_losses
Yeqing Li's avatar
Yeqing Li committed
246
247
248
249
250
251
252
253
    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

Fan Yang's avatar
Fan Yang committed
254
255
256
257
  def validation_step(self,
                      inputs: Tuple[Any, Any],
                      model: tf.keras.Model,
                      metrics: Optional[List[Any]] = None):
Yeqing Li's avatar
Yeqing Li committed
258
259
260
261
262
263
264
265
266
267
268
269
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs

Yeqing Li's avatar
Yeqing Li committed
270
    outputs = self.inference_step(features, model)
Yeqing Li's avatar
Yeqing Li committed
271
    outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
Yeqing Li's avatar
Yeqing Li committed
272
    logs = self.build_losses(model_outputs=outputs, labels=labels,
Yeqing Li's avatar
Yeqing Li committed
273
274
275
276
277
278
279
280
281
282
                             aux_losses=model.losses)

    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

Fan Yang's avatar
Fan Yang committed
283
  def inference_step(self, features: tf.Tensor, model: tf.keras.Model):
Yeqing Li's avatar
Yeqing Li committed
284
    """Performs the forward step."""
Yeqing Li's avatar
Yeqing Li committed
285
    outputs = model(features, training=False)
Yeqing Li's avatar
Yeqing Li committed
286
287
288
289
    if self.task_config.train_data.is_multilabel:
      outputs = tf.math.sigmoid(outputs)
    else:
      outputs = tf.math.softmax(outputs)
Yin Cui's avatar
Yin Cui committed
290
291
292
293
294
295
296
    num_test_clips = self.task_config.validation_data.num_test_clips
    num_test_crops = self.task_config.validation_data.num_test_crops
    num_test_views = num_test_clips * num_test_crops
    if num_test_views > 1:
      # Averaging output probabilities across multiples views.
      outputs = tf.reshape(outputs, [-1, num_test_views, outputs.shape[-1]])
      outputs = tf.reduce_mean(outputs, axis=1)
Yeqing Li's avatar
Yeqing Li committed
297
    return outputs