video_classification.py 9.44 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Video classification task definition."""
17
from absl import logging
Yeqing Li's avatar
Yeqing Li committed
18
19
20
21
22
23
24
import tensorflow as tf
from official.core import base_task
from official.core import input_reader
from official.core import task_factory
from official.modeling import tf_utils
from official.vision.beta.configs import video_classification as exp_cfg
from official.vision.beta.dataloaders import video_input
Yeqing Li's avatar
Yeqing Li committed
25
from official.vision.beta.modeling import factory_3d
Yeqing Li's avatar
Yeqing Li committed
26
27
28
29
30
31
32
33


@task_factory.register_task_cls(exp_cfg.VideoClassificationTask)
class VideoClassificationTask(base_task.Task):
  """A task for video classification."""

  def build_model(self):
    """Builds video classification model."""
34
35
36
37
38
39
40
    common_input_shape = [
        d1 if d1 == d2 else None
        for d1, d2 in zip(self.task_config.train_data.feature_shape,
                          self.task_config.validation_data.feature_shape)
    ]
    input_specs = tf.keras.layers.InputSpec(shape=[None] + common_input_shape)
    logging.info('Build model input %r', common_input_shape)
Yeqing Li's avatar
Yeqing Li committed
41
42
43
44
45
46
47
48

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf.keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

Yeqing Li's avatar
Yeqing Li committed
49
50
    model = factory_3d.build_model(
        self.task_config.model.model_type,
Yeqing Li's avatar
Yeqing Li committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        input_specs=input_specs,
        model_config=self.task_config.model,
        num_classes=self.task_config.train_data.num_classes,
        l2_regularizer=l2_regularizer)
    return model

  def build_inputs(self, params: exp_cfg.DataConfig, input_context=None):
    """Builds classification input."""

    decoder = video_input.Decoder()
    decoder_fn = decoder.decode
    parser = video_input.Parser(input_params=params)
    postprocess_fn = video_input.PostBatchProcessor(params)

    reader = input_reader.InputReader(
        params,
        dataset_fn=tf.data.TFRecordDataset,
        decoder_fn=decoder_fn,
        parser_fn=parser.parse_fn(params.is_training),
        postprocess_fn=postprocess_fn)

    dataset = reader.read(input_context=input_context)

    return dataset

  def build_losses(self, labels, model_outputs, aux_losses=None):
    """Sparse categorical cross entropy loss.

    Args:
      labels: labels.
      model_outputs: Output logits of the classifier.
      aux_losses: auxiliarly loss tensors, i.e. `losses` in keras.Model.

    Returns:
      The total loss tensor.
    """
Yeqing Li's avatar
Yeqing Li committed
87
    all_losses = {}
Yeqing Li's avatar
Yeqing Li committed
88
    losses_config = self.task_config.losses
Yeqing Li's avatar
Yeqing Li committed
89
90
91
92
93
94
95
96
97
98
    total_loss = None
    if self.task_config.train_data.is_multilabel:
      entropy = -tf.reduce_mean(
          tf.reduce_sum(model_outputs * tf.math.log(model_outputs + 1e-8), -1))
      total_loss = tf.keras.losses.binary_crossentropy(
          labels, model_outputs, from_logits=False)
      all_losses.update({
          'class_loss': total_loss,
          'entropy': entropy,
      })
Yeqing Li's avatar
Yeqing Li committed
99
    else:
Yeqing Li's avatar
Yeqing Li committed
100
101
102
103
104
105
106
107
108
      if losses_config.one_hot:
        total_loss = tf.keras.losses.categorical_crossentropy(
            labels,
            model_outputs,
            from_logits=False,
            label_smoothing=losses_config.label_smoothing)
      else:
        total_loss = tf.keras.losses.sparse_categorical_crossentropy(
            labels, model_outputs, from_logits=False)
Yeqing Li's avatar
Yeqing Li committed
109

Yeqing Li's avatar
Yeqing Li committed
110
111
112
113
      total_loss = tf_utils.safe_mean(total_loss)
      all_losses.update({
          'class_loss': total_loss,
      })
Yeqing Li's avatar
Yeqing Li committed
114
    if aux_losses:
Yeqing Li's avatar
Yeqing Li committed
115
116
117
      all_losses.update({
          'reg_loss': aux_losses,
      })
Yeqing Li's avatar
Yeqing Li committed
118
      total_loss += tf.add_n(aux_losses)
Yeqing Li's avatar
Yeqing Li committed
119
    all_losses[self.loss] = total_loss
Yeqing Li's avatar
Yeqing Li committed
120

Yeqing Li's avatar
Yeqing Li committed
121
    return all_losses
Yeqing Li's avatar
Yeqing Li committed
122
123
124
125
126
127
128
129
130

  def build_metrics(self, training=True):
    """Gets streaming metrics for training/validation."""
    if self.task_config.losses.one_hot:
      metrics = [
          tf.keras.metrics.CategoricalAccuracy(name='accuracy'),
          tf.keras.metrics.TopKCategoricalAccuracy(k=1, name='top_1_accuracy'),
          tf.keras.metrics.TopKCategoricalAccuracy(k=5, name='top_5_accuracy')
      ]
Yeqing Li's avatar
Yeqing Li committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
      if self.task_config.train_data.is_multilabel:
        metrics.append(
            tf.keras.metrics.AUC(
                curve='ROC',
                multi_label=self.task_config.train_data.is_multilabel,
                name='ROC-AUC'))
        metrics.append(
            tf.keras.metrics.RecallAtPrecision(
                0.95, name='RecallAtPrecision95'))
        metrics.append(
            tf.keras.metrics.AUC(
                curve='PR',
                multi_label=self.task_config.train_data.is_multilabel,
                name='PR-AUC'))
Yeqing Li's avatar
Yeqing Li committed
145
146
147
148
149
150
151
152
153
154
    else:
      metrics = [
          tf.keras.metrics.SparseCategoricalAccuracy(name='accuracy'),
          tf.keras.metrics.SparseTopKCategoricalAccuracy(
              k=1, name='top_1_accuracy'),
          tf.keras.metrics.SparseTopKCategoricalAccuracy(
              k=5, name='top_5_accuracy')
      ]
    return metrics

Yeqing Li's avatar
Yeqing Li committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
  def process_metrics(self, metrics, labels, model_outputs):
    """Process and update metrics.

    Called when using custom training loop API.

    Args:
      metrics: a nested structure of metrics objects. The return of function
        self.build_metrics.
      labels: a tensor or a nested structure of tensors.
      model_outputs: a tensor or a nested structure of tensors. For example,
        output of the keras model built by self.build_model.
    """
    for metric in metrics:
      metric.update_state(labels, model_outputs)

Yeqing Li's avatar
Yeqing Li committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
  def train_step(self, inputs, model, optimizer, metrics=None):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs

    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(features['image'], training=True)
      # Casting output layer as float32 is necessary when mixed_precision is
      # mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
Yeqing Li's avatar
Yeqing Li committed
193
194
195
196
197
      if self.task_config.train_data.is_multilabel:
        outputs = tf.math.sigmoid(outputs)
      else:
        outputs = tf.math.softmax(outputs)
      all_losses = self.build_losses(
Yeqing Li's avatar
Yeqing Li committed
198
          model_outputs=outputs, labels=labels, aux_losses=model.losses)
Yeqing Li's avatar
Yeqing Li committed
199
      loss = all_losses[self.loss]
Yeqing Li's avatar
Yeqing Li committed
200
201
202
203
204
205
206
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(
Pankaj Kanwar's avatar
Pankaj Kanwar committed
207
          optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Yeqing Li's avatar
Yeqing Li committed
208
209
210
211
212
213
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient before apply_gradients when LossScaleOptimizer is
    # used.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
214
    if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Yeqing Li's avatar
Yeqing Li committed
215
216
217
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

Yeqing Li's avatar
Yeqing Li committed
218
    logs = all_losses
Yeqing Li's avatar
Yeqing Li committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

  def validation_step(self, inputs, model, metrics=None):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs

    outputs = self.inference_step(features['image'], model)
    outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
Yeqing Li's avatar
Yeqing Li committed
242
    logs = self.build_losses(model_outputs=outputs, labels=labels,
Yeqing Li's avatar
Yeqing Li committed
243
244
245
246
247
248
249
250
251
252
253
254
                             aux_losses=model.losses)

    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

  def inference_step(self, inputs, model):
    """Performs the forward step."""
Yeqing Li's avatar
Yeqing Li committed
255
256
257
258
259
260
    outputs = model(inputs, training=False)
    if self.task_config.train_data.is_multilabel:
      outputs = tf.math.sigmoid(outputs)
    else:
      outputs = tf.math.softmax(outputs)
    return outputs