classifier_data_lib.py 53.6 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
16
17
18
"""BERT library to process data for classification task."""

import collections
import csv
19
import importlib
stephenwu's avatar
stephenwu committed
20
import json
21
22
23
24
import os

from absl import logging
import tensorflow as tf
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
import tensorflow_datasets as tfds
26

27
from official.nlp.bert import tokenization
28
29
30


class InputExample(object):
31
  """A single training/test example for simple seq regression/classification."""
32

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
33
34
35
36
37
38
  def __init__(self,
               guid,
               text_a,
               text_b=None,
               label=None,
               weight=None,
Chen Chen's avatar
Chen Chen committed
39
               example_id=None):
40
41
42
43
44
45
46
47
    """Constructs a InputExample.

    Args:
      guid: Unique id for the example.
      text_a: string. The untokenized text of the first sequence. For single
        sequence tasks, only this sequence must be specified.
      text_b: (Optional) string. The untokenized text of the second sequence.
        Only must be specified for sequence pair tasks.
48
49
50
      label: (Optional) string for classification, float for regression. The
        label of the example. This should be specified for train and dev
        examples, but not for test examples.
Maxim Neumann's avatar
Maxim Neumann committed
51
52
      weight: (Optional) float. The weight of the example to be used during
        training.
Chen Chen's avatar
Chen Chen committed
53
54
      example_id: (Optional) int. The int identification number of example in
        the corpus.
55
56
57
58
59
    """
    self.guid = guid
    self.text_a = text_a
    self.text_b = text_b
    self.label = label
Maxim Neumann's avatar
Maxim Neumann committed
60
    self.weight = weight
Chen Chen's avatar
Chen Chen committed
61
    self.example_id = example_id
62
63
64
65
66
67
68
69
70
71


class InputFeatures(object):
  """A single set of features of data."""

  def __init__(self,
               input_ids,
               input_mask,
               segment_ids,
               label_id,
Maxim Neumann's avatar
Maxim Neumann committed
72
               is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73
               weight=None,
Chen Chen's avatar
Chen Chen committed
74
               example_id=None):
75
76
77
78
79
    self.input_ids = input_ids
    self.input_mask = input_mask
    self.segment_ids = segment_ids
    self.label_id = label_id
    self.is_real_example = is_real_example
Maxim Neumann's avatar
Maxim Neumann committed
80
    self.weight = weight
Chen Chen's avatar
Chen Chen committed
81
    self.example_id = example_id
82
83
84


class DataProcessor(object):
85
  """Base class for converters for seq regression/classification datasets."""
86

87
88
  def __init__(self, process_text_fn=tokenization.convert_to_unicode):
    self.process_text_fn = process_text_fn
89
90
    self.is_regression = False
    self.label_type = None
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
  def get_train_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the train set."""
    raise NotImplementedError()

  def get_dev_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the dev set."""
    raise NotImplementedError()

  def get_test_examples(self, data_dir):
    """Gets a collection of `InputExample`s for prediction."""
    raise NotImplementedError()

  def get_labels(self):
    """Gets the list of labels for this data set."""
    raise NotImplementedError()

  @staticmethod
  def get_processor_name():
    """Gets the string identifier of the processor."""
    raise NotImplementedError()

  @classmethod
  def _read_tsv(cls, input_file, quotechar=None):
    """Reads a tab separated value file."""
    with tf.io.gfile.GFile(input_file, "r") as f:
      reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
      lines = []
      for line in reader:
        lines.append(line)
      return lines

stephenwu's avatar
stephenwu committed
123
  @classmethod
stephenwu's avatar
stephenwu committed
124
  def _read_jsonl(cls, input_file):
stephenwu's avatar
stephenwu committed
125
    """Reads a json line file."""
126
    with tf.io.gfile.GFile(input_file, "r") as f:
stephenwu's avatar
stephenwu committed
127
128
129
130
131
      lines = []
      for json_str in f:
        lines.append(json.loads(json_str))
    return lines

132

Vincent Etter's avatar
Vincent Etter committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
class AxProcessor(DataProcessor):
  """Processor for the AX dataset (GLUE diagnostics dataset)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "AX"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training/dev/test sets."""
    text_a_index = 1 if set_type == "test" else 8
    text_b_index = 2 if set_type == "test" else 9
    examples = []
    for i, line in enumerate(lines):
      # Skip header.
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, self.process_text_fn(line[0]))
      text_a = self.process_text_fn(line[text_a_index])
      text_b = self.process_text_fn(line[text_b_index])
      if set_type == "test":
        label = "contradiction"
      else:
        label = self.process_text_fn(line[-1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


181
182
class ColaProcessor(DataProcessor):
  """Processor for the CoLA data set (GLUE version)."""
183
184
185

  def get_train_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
186
    return self._create_examples_tfds("train")
187
188
189

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
190
    return self._create_examples_tfds("validation")
191
192
193

  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
194
    return self._create_examples_tfds("test")
195
196
197
198
199
200
201
202
203
204

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "COLA"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
205
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
206
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
207
208
    dataset = tfds.load(
        "glue/cola", split=set_type, try_gcs=True).as_numpy_iterator()
209
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
210
    for i, example in enumerate(dataset):
211
      guid = "%s-%s" % (set_type, i)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
212
213
214
215
      label = "0"
      text_a = self.process_text_fn(example["sentence"])
      if set_type != "test":
        label = str(example["label"])
216
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
217
218
          InputExample(
              guid=guid, text_a=text_a, text_b=None, label=label, weight=None))
219
220
    return examples

221

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
class ImdbProcessor(DataProcessor):
  """Processor for the IMDb dataset."""

  def get_labels(self):
    return ["neg", "pos"]

  def get_train_examples(self, data_dir):
    return self._create_examples(os.path.join(data_dir, "train"))

  def get_dev_examples(self, data_dir):
    return self._create_examples(os.path.join(data_dir, "test"))

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "IMDB"

  def _create_examples(self, data_dir):
    """Creates examples."""
    examples = []
    for label in ["neg", "pos"]:
      cur_dir = os.path.join(data_dir, label)
      for filename in tf.io.gfile.listdir(cur_dir):
        if not filename.endswith("txt"):
          continue

        if len(examples) % 1000 == 0:
          logging.info("Loading dev example %d", len(examples))

        path = os.path.join(cur_dir, filename)
        with tf.io.gfile.GFile(path, "r") as f:
          text = f.read().strip().replace("<br />", " ")
        examples.append(
            InputExample(
                guid="unused_id", text_a=text, text_b=None, label=label))
    return examples


260
261
262
class MnliProcessor(DataProcessor):
  """Processor for the MultiNLI data set (GLUE version)."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
263
264
265
266
267
268
269
270
  def __init__(self,
               mnli_type="matched",
               process_text_fn=tokenization.convert_to_unicode):
    super(MnliProcessor, self).__init__(process_text_fn)
    if mnli_type not in ("matched", "mismatched"):
      raise ValueError("Invalid `mnli_type`: %s" % mnli_type)
    self.mnli_type = mnli_type

271
272
273
274
275
276
277
  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
278
279
280
281
282
283
284
285
    if self.mnli_type == "matched":
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
          "dev_matched")
    else:
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")),
          "dev_mismatched")
286

Tianqi Liu's avatar
Tianqi Liu committed
287
288
  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
289
290
291
292
293
294
    if self.mnli_type == "matched":
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test")
    else:
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), "test")
Tianqi Liu's avatar
Tianqi Liu committed
295

296
297
298
299
300
301
302
  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
303
    return "MNLI"
Tianqi Liu's avatar
Tianqi Liu committed
304

305
  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
306
    """Creates examples for the training/dev/test sets."""
Tianqi Liu's avatar
Tianqi Liu committed
307
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
308
    for i, line in enumerate(lines):
309
310
311
312
313
314
315
316
317
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, self.process_text_fn(line[0]))
      text_a = self.process_text_fn(line[8])
      text_b = self.process_text_fn(line[9])
      if set_type == "test":
        label = "contradiction"
      else:
        label = self.process_text_fn(line[-1])
Tianqi Liu's avatar
Tianqi Liu committed
318
319
320
321
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

322
323
324
325
326
327
328
329
330

class MrpcProcessor(DataProcessor):
  """Processor for the MRPC data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

Tianqi Liu's avatar
Tianqi Liu committed
331
332
  def get_dev_examples(self, data_dir):
    """See base class."""
333
334
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
Tianqi Liu's avatar
Tianqi Liu committed
335
336
337

  def get_test_examples(self, data_dir):
    """See base class."""
338
339
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
Tianqi Liu's avatar
Tianqi Liu committed
340
341
342

  def get_labels(self):
    """See base class."""
343
    return ["0", "1"]
Tianqi Liu's avatar
Tianqi Liu committed
344
345
346
347

  @staticmethod
  def get_processor_name():
    """See base class."""
348
349
350
    return "MRPC"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
351
    """Creates examples for the training/dev/test sets."""
352
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
353
    for i, line in enumerate(lines):
354
355
356
357
358
359
360
361
362
363
364
365
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      text_a = self.process_text_fn(line[3])
      text_b = self.process_text_fn(line[4])
      if set_type == "test":
        label = "0"
      else:
        label = self.process_text_fn(line[0])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples
Tianqi Liu's avatar
Tianqi Liu committed
366
367
368
369
370
371


class PawsxProcessor(DataProcessor):
  """Processor for the PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

Tianqi Liu's avatar
Tianqi Liu committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
    super(PawsxProcessor, self).__init__(process_text_fn)
    if language == "all":
      self.languages = PawsxProcessor.supported_languages
    elif language not in PawsxProcessor.supported_languages:
      raise ValueError("language %s is not supported for PAWS-X task." %
                       language)
    else:
      self.languages = [language]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = []
    for language in self.languages:
      if language == "en":
        train_tsv = "train.tsv"
      else:
        train_tsv = "translated_train.tsv"
      # Skips the header.
      lines.extend(
Tianqi Liu's avatar
Tianqi Liu committed
394
          self._read_tsv(os.path.join(data_dir, language, train_tsv))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
395
396

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
397
    for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
398
399
400
401
402
403
404
405
406
407
408
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[1])
      text_b = self.process_text_fn(line[2])
      label = self.process_text_fn(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = []
Tianqi Liu's avatar
Tianqi Liu committed
409
    for lang in PawsxProcessor.supported_languages:
Tianqi Liu's avatar
Tianqi Liu committed
410
411
      lines.extend(
          self._read_tsv(os.path.join(data_dir, lang, "dev_2k.tsv"))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
412
413

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
414
    for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
415
      guid = "dev-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
416
417
418
      text_a = self.process_text_fn(line[1])
      text_b = self.process_text_fn(line[2])
      label = self.process_text_fn(line[3])
Tianqi Liu's avatar
Tianqi Liu committed
419
420
421
422
423
424
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
425
426
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
Tianqi Liu's avatar
Tianqi Liu committed
427
      lines = self._read_tsv(os.path.join(data_dir, lang, "test_2k.tsv"))[1:]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
428
      for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
429
        guid = "test-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
430
431
432
        text_a = self.process_text_fn(line[1])
        text_b = self.process_text_fn(line[2])
        label = self.process_text_fn(line[3])
Tianqi Liu's avatar
Tianqi Liu committed
433
        examples_by_lang[lang].append(
Tianqi Liu's avatar
Tianqi Liu committed
434
435
436
437
438
439
440
441
442
443
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
444
445
446
    return "XTREME-PAWS-X"


447
448
class QnliProcessor(DataProcessor):
  """Processor for the QNLI data set (GLUE version)."""
Saurabh Saxena's avatar
Saurabh Saxena committed
449
450
451
452
453
454
455
456
457

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
458
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched")
Saurabh Saxena's avatar
Saurabh Saxena committed
459
460
461
462
463
464
465
466

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
467
    return ["entailment", "not_entailment"]
Saurabh Saxena's avatar
Saurabh Saxena committed
468
469
470
471

  @staticmethod
  def get_processor_name():
    """See base class."""
472
    return "QNLI"
Saurabh Saxena's avatar
Saurabh Saxena committed
473
474

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
475
    """Creates examples for the training/dev/test sets."""
Saurabh Saxena's avatar
Saurabh Saxena committed
476
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
477
    for i, line in enumerate(lines):
Saurabh Saxena's avatar
Saurabh Saxena committed
478
479
      if i == 0:
        continue
480
481
482
483
484
485
486
487
488
      guid = "%s-%s" % (set_type, 1)
      if set_type == "test":
        text_a = tokenization.convert_to_unicode(line[1])
        text_b = tokenization.convert_to_unicode(line[2])
        label = "entailment"
      else:
        text_a = tokenization.convert_to_unicode(line[1])
        text_b = tokenization.convert_to_unicode(line[2])
        label = tokenization.convert_to_unicode(line[-1])
Tianqi Liu's avatar
Tianqi Liu committed
489
490
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
Saurabh Saxena's avatar
Saurabh Saxena committed
491
492
493
    return examples


494
495
class QqpProcessor(DataProcessor):
  """Processor for the QQP data set (GLUE version)."""
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
519
    return "QQP"
520
521

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
522
    """Creates examples for the training/dev/test sets."""
523
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
524
    for i, line in enumerate(lines):
525
526
527
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, line[0])
528
529
530
531
532
533
534
535
536
537
538
539
      if set_type == "test":
        text_a = line[1]
        text_b = line[2]
        label = "0"
      else:
        # There appear to be some garbage lines in the train dataset.
        try:
          text_a = line[3]
          text_b = line[4]
          label = line[5]
        except IndexError:
          continue
540
      examples.append(
541
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
542
543
544
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
class RteProcessor(DataProcessor):
  """Processor for the RTE data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    # All datasets are converted to 2-class split, where for 3-class datasets we
    # collapse neutral and contradiction into not_entailment.
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "RTE"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
575
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
576
577
578
579
580
    examples = []
    for i, line in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
581
582
      text_a = tokenization.convert_to_unicode(line[1])
      text_b = tokenization.convert_to_unicode(line[2])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
583
584
585
586
587
588
589
590
591
      if set_type == "test":
        label = "entailment"
      else:
        label = tokenization.convert_to_unicode(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
class SstProcessor(DataProcessor):
  """Processor for the SST-2 data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "SST-2"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
620
    """Creates examples for the training/dev/test sets."""
621
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
622
    for i, line in enumerate(lines):
623
624
625
626
627
628
629
630
631
632
633
634
635
636
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = tokenization.convert_to_unicode(line[1])
        label = "0"
      else:
        text_a = tokenization.convert_to_unicode(line[0])
        label = tokenization.convert_to_unicode(line[1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
    return examples


637
638
639
640
641
642
643
644
class StsBProcessor(DataProcessor):
  """Processor for the STS-B data set (GLUE version)."""

  def __init__(self, process_text_fn=tokenization.convert_to_unicode):
    super(StsBProcessor, self).__init__(process_text_fn=process_text_fn)
    self.is_regression = True
    self.label_type = float
    self._labels = None
645
646
647
648
649
650
651
652
653

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
654
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
655
656
657
658
659
660
661
662

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
663
    return self._labels
664
665
666
667

  @staticmethod
  def get_processor_name():
    """See base class."""
668
    return "STS-B"
669
670

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
671
    """Creates examples for the training/dev/test sets."""
672
    examples = []
673
    for i, line in enumerate(lines):
674
675
      if i == 0:
        continue
676
677
678
      guid = "%s-%s" % (set_type, i)
      text_a = tokenization.convert_to_unicode(line[7])
      text_b = tokenization.convert_to_unicode(line[8])
679
      if set_type == "test":
680
        label = 0.0
681
      else:
682
        label = self.label_type(tokenization.convert_to_unicode(line[9]))
683
684
685
686
687
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
688
class TfdsProcessor(DataProcessor):
Maxim Neumann's avatar
Maxim Neumann committed
689
  """Processor for generic text classification and regression TFDS data set.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
690
691
692
693
694
695
696
697
698
699

  The TFDS parameters are expected to be provided in the tfds_params string, in
  a comma-separated list of parameter assignments.
  Examples:
    tfds_params="dataset=scicite,text_key=string"
    tfds_params="dataset=imdb_reviews,test_split=,dev_split=test"
    tfds_params="dataset=glue/cola,text_key=sentence"
    tfds_params="dataset=glue/sst2,text_key=sentence"
    tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence"
    tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2"
Maxim Neumann's avatar
Maxim Neumann committed
700
701
    tfds_params="dataset=glue/stsb,text_key=sentence1,text_b_key=sentence2,"
                "is_regression=true,label_type=float"
Maxim Neumann's avatar
Maxim Neumann committed
702
703
    tfds_params="dataset=snli,text_key=premise,text_b_key=hypothesis,"
                "skip_label=-1"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
704
705
706
707
  Possible parameters (please refer to the documentation of Tensorflow Datasets
  (TFDS) for the meaning of individual parameters):
    dataset: Required dataset name (potentially with subset and version number).
    data_dir: Optional TFDS source root directory.
708
    module_import: Optional Dataset module to import.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
709
710
711
712
713
714
715
716
717
    train_split: Name of the train split (defaults to `train`).
    dev_split: Name of the dev split (defaults to `validation`).
    test_split: Name of the test split (defaults to `test`).
    text_key: Key of the text_a feature (defaults to `text`).
    text_b_key: Key of the second text feature if available.
    label_key: Key of the label feature (defaults to `label`).
    test_text_key: Key of the text feature to use in test set.
    test_text_b_key: Key of the second text feature to use in test set.
    test_label: String to be used as the label for all test examples.
Maxim Neumann's avatar
Maxim Neumann committed
718
    label_type: Type of the label key (defaults to `int`).
Maxim Neumann's avatar
Maxim Neumann committed
719
    weight_key: Key of the float sample weight (is not used if not provided).
Maxim Neumann's avatar
Maxim Neumann committed
720
    is_regression: Whether the task is a regression problem (defaults to False).
Maxim Neumann's avatar
Maxim Neumann committed
721
    skip_label: Skip examples with given label (defaults to None).
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
722
723
  """

Tianqi Liu's avatar
Tianqi Liu committed
724
725
  def __init__(self,
               tfds_params,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
726
727
728
               process_text_fn=tokenization.convert_to_unicode):
    super(TfdsProcessor, self).__init__(process_text_fn)
    self._process_tfds_params_str(tfds_params)
729
730
731
    if self.module_import:
      importlib.import_module(self.module_import)

Tianqi Liu's avatar
Tianqi Liu committed
732
733
    self.dataset, info = tfds.load(
        self.dataset_name, data_dir=self.data_dir, with_info=True)
Maxim Neumann's avatar
Maxim Neumann committed
734
735
736
737
    if self.is_regression:
      self._labels = None
    else:
      self._labels = list(range(info.features[self.label_key].num_classes))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
738
739
740

  def _process_tfds_params_str(self, params_str):
    """Extracts TFDS parameters from a comma-separated assignements string."""
Maxim Neumann's avatar
Maxim Neumann committed
741
742
743
    dtype_map = {"int": int, "float": float}
    cast_str_to_bool = lambda s: s.lower() not in ["false", "0"]

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
744
745
746
747
    tuples = [x.split("=") for x in params_str.split(",")]
    d = {k.strip(): v.strip() for k, v in tuples}
    self.dataset_name = d["dataset"]  # Required.
    self.data_dir = d.get("data_dir", None)
748
    self.module_import = d.get("module_import", None)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
749
750
751
752
753
754
755
756
757
    self.train_split = d.get("train_split", "train")
    self.dev_split = d.get("dev_split", "validation")
    self.test_split = d.get("test_split", "test")
    self.text_key = d.get("text_key", "text")
    self.text_b_key = d.get("text_b_key", None)
    self.label_key = d.get("label_key", "label")
    self.test_text_key = d.get("test_text_key", self.text_key)
    self.test_text_b_key = d.get("test_text_b_key", self.text_b_key)
    self.test_label = d.get("test_label", "test_example")
Maxim Neumann's avatar
Maxim Neumann committed
758
759
    self.label_type = dtype_map[d.get("label_type", "int")]
    self.is_regression = cast_str_to_bool(d.get("is_regression", "False"))
Maxim Neumann's avatar
Maxim Neumann committed
760
    self.weight_key = d.get("weight_key", None)
Maxim Neumann's avatar
Maxim Neumann committed
761
762
763
    self.skip_label = d.get("skip_label", None)
    if self.skip_label is not None:
      self.skip_label = self.label_type(self.skip_label)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

  def get_train_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.train_split, "train")

  def get_dev_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.dev_split, "dev")

  def get_test_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.test_split, "test")

  def get_labels(self):
    return self._labels

  def get_processor_name(self):
    return "TFDS_" + self.dataset_name

  def _create_examples(self, split_name, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
784
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
785
786
787
788
    if split_name not in self.dataset:
      raise ValueError("Split {} not available.".format(split_name))
    dataset = self.dataset[split_name].as_numpy_iterator()
    examples = []
Maxim Neumann's avatar
Maxim Neumann committed
789
    text_b, weight = None, None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
790
791
792
793
794
795
796
797
798
799
800
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = self.process_text_fn(example[self.test_text_key])
        if self.test_text_b_key:
          text_b = self.process_text_fn(example[self.test_text_b_key])
        label = self.test_label
      else:
        text_a = self.process_text_fn(example[self.text_key])
        if self.text_b_key:
          text_b = self.process_text_fn(example[self.text_b_key])
Maxim Neumann's avatar
Maxim Neumann committed
801
        label = self.label_type(example[self.label_key])
Maxim Neumann's avatar
Maxim Neumann committed
802
803
        if self.skip_label is not None and label == self.skip_label:
          continue
Maxim Neumann's avatar
Maxim Neumann committed
804
805
      if self.weight_key:
        weight = float(example[self.weight_key])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
806
      examples.append(
Tianqi Liu's avatar
Tianqi Liu committed
807
808
809
810
811
812
          InputExample(
              guid=guid,
              text_a=text_a,
              text_b=text_b,
              label=label,
              weight=weight))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
813
814
815
    return examples


816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
class WnliProcessor(DataProcessor):
  """Processor for the WNLI data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "WNLI"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
844
    """Creates examples for the training/dev/test sets."""
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
    examples = []
    for i, line in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      text_a = tokenization.convert_to_unicode(line[1])
      text_b = tokenization.convert_to_unicode(line[2])
      if set_type == "test":
        label = "0"
      else:
        label = tokenization.convert_to_unicode(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
class XnliProcessor(DataProcessor):
  """Processor for the XNLI data set."""
  supported_languages = [
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
  ]

  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
    super(XnliProcessor, self).__init__(process_text_fn)
    if language == "all":
      self.languages = XnliProcessor.supported_languages
    elif language not in XnliProcessor.supported_languages:
      raise ValueError("language %s is not supported for XNLI task." % language)
    else:
      self.languages = [language]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = []
    for language in self.languages:
      # Skips the header.
      lines.extend(
          self._read_tsv(
              os.path.join(data_dir, "multinli",
                           "multinli.train.%s.tsv" % language))[1:])

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
890
    for i, line in enumerate(lines):
891
892
893
894
895
896
897
898
899
900
901
902
903
904
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      if label == self.process_text_fn("contradictory"):
        label = self.process_text_fn("contradiction")
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
905
    for i, line in enumerate(lines):
906
907
908
909
910
911
912
913
914
915
916
917
918
919
      if i == 0:
        continue
      guid = "dev-%d" % i
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv"))
    examples_by_lang = {k: [] for k in XnliProcessor.supported_languages}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
920
    for i, line in enumerate(lines):
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
      if i == 0:
        continue
      guid = "test-%d" % i
      language = self.process_text_fn(line[0])
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
      examples_by_lang[language].append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XNLI"


class XtremePawsxProcessor(DataProcessor):
  """Processor for the XTREME PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

946
947
948
949
950
951
  def __init__(self,
               process_text_fn=tokenization.convert_to_unicode,
               translated_data_dir=None,
               only_use_en_dev=True):
    """See base class.

952
    Args:
953
954
955
956
957
958
959
960
961
962
      process_text_fn: See base class.
      translated_data_dir: If specified, will also include translated data in
        the training and testing data.
      only_use_en_dev: If True, only use english dev data. Otherwise, use dev
        data from all languages.
    """
    super(XtremePawsxProcessor, self).__init__(process_text_fn)
    self.translated_data_dir = translated_data_dir
    self.only_use_en_dev = only_use_en_dev

963
964
965
  def get_train_examples(self, data_dir):
    """See base class."""
    examples = []
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
    if self.translated_data_dir is None:
      lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
      for i, line in enumerate(lines):
        guid = "train-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-train",
                         f"en-{lang}-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"train-{lang}-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = self.process_text_fn(line[4])
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
988
989
990
991
992
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    examples = []
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
    if self.only_use_en_dev:
      lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
      for i, line in enumerate(lines):
        guid = "dev-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv"))
        for i, line in enumerate(lines):
          guid = f"dev-{lang}-{i}"
          text_a = self.process_text_fn(line[0])
          text_b = self.process_text_fn(line[1])
          label = self.process_text_fn(line[2])
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1013
1014
1015
1016
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
1017
    examples_by_lang = {}
1018
    for lang in self.supported_languages:
1019
      examples_by_lang[lang] = []
1020
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1021
      for i, line in enumerate(lines):
1022
        guid = f"test-{lang}-{i}"
1023
1024
1025
1026
1027
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = "0"
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
    if self.translated_data_dir is not None:
      for lang in self.supported_languages:
        if lang == "en":
          continue
        examples_by_lang[f"{lang}-en"] = []
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-test",
                         f"test-{lang}-en-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"test-{lang}-en-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = "0"
          examples_by_lang[f"{lang}-en"].append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-PAWS-X"


class XtremeXnliProcessor(DataProcessor):
  """Processor for the XTREME XNLI data set."""
  supported_languages = [
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
  ]

1063
1064
1065
1066
1067
1068
  def __init__(self,
               process_text_fn=tokenization.convert_to_unicode,
               translated_data_dir=None,
               only_use_en_dev=True):
    """See base class.

1069
    Args:
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
      process_text_fn: See base class.
      translated_data_dir: If specified, will also include translated data in
        the training data.
      only_use_en_dev: If True, only use english dev data. Otherwise, use dev
        data from all languages.
    """
    super(XtremeXnliProcessor, self).__init__(process_text_fn)
    self.translated_data_dir = translated_data_dir
    self.only_use_en_dev = only_use_en_dev

1080
1081
1082
1083
1084
  def get_train_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))

    examples = []
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
    if self.translated_data_dir is None:
      for i, line in enumerate(lines):
        guid = "train-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        if label == self.process_text_fn("contradictory"):
          label = self.process_text_fn("contradiction")
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-train",
                         f"en-{lang}-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"train-{lang}-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = self.process_text_fn(line[4])
          if label == self.process_text_fn("contradictory"):
            label = self.process_text_fn("contradiction")
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1110
1111
1112
1113
1114
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    examples = []
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
    if self.only_use_en_dev:
      lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
      for i, line in enumerate(lines):
        guid = "dev-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv"))
        for i, line in enumerate(lines):
          guid = f"dev-{lang}-{i}"
          text_a = self.process_text_fn(line[0])
          text_b = self.process_text_fn(line[1])
          label = self.process_text_fn(line[2])
          if label == self.process_text_fn("contradictory"):
            label = self.process_text_fn("contradiction")
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1137
1138
1139
1140
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
1141
    examples_by_lang = {}
1142
    for lang in self.supported_languages:
1143
      examples_by_lang[lang] = []
1144
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1145
      for i, line in enumerate(lines):
1146
        guid = f"test-{lang}-{i}"
1147
1148
1149
1150
1151
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = "contradiction"
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
    if self.translated_data_dir is not None:
      for lang in self.supported_languages:
        if lang == "en":
          continue
        examples_by_lang[f"{lang}-en"] = []
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-test",
                         f"test-{lang}-en-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"test-{lang}-en-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = "contradiction"
          examples_by_lang[f"{lang}-en"].append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-XNLI"


1180
1181
1182
1183
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
  """Converts a single `InputExample` into a single `InputFeatures`."""
  label_map = {}
Maxim Neumann's avatar
Maxim Neumann committed
1184
1185
1186
  if label_list:
    for (i, label) in enumerate(label_list):
      label_map[label] = i
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202

  tokens_a = tokenizer.tokenize(example.text_a)
  tokens_b = None
  if example.text_b:
    tokens_b = tokenizer.tokenize(example.text_b)

  if tokens_b:
    # Modifies `tokens_a` and `tokens_b` in place so that the total
    # length is less than the specified length.
    # Account for [CLS], [SEP], [SEP] with "- 3"
    _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
  else:
    # Account for [CLS] and [SEP] with "- 2"
    if len(tokens_a) > max_seq_length - 2:
      tokens_a = tokens_a[0:(max_seq_length - 2)]

1203
1204
1205
1206
1207
  seg_id_a = 0
  seg_id_b = 1
  seg_id_cls = 0
  seg_id_pad = 0

1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
  # The convention in BERT is:
  # (a) For sequence pairs:
  #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
  #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
  # (b) For single sequences:
  #  tokens:   [CLS] the dog is hairy . [SEP]
  #  type_ids: 0     0   0   0  0     0 0
  #
  # Where "type_ids" are used to indicate whether this is the first
  # sequence or the second sequence. The embedding vectors for `type=0` and
  # `type=1` were learned during pre-training and are added to the wordpiece
  # embedding vector (and position vector). This is not *strictly* necessary
  # since the [SEP] token unambiguously separates the sequences, but it makes
  # it easier for the model to learn the concept of sequences.
  #
  # For classification tasks, the first vector (corresponding to [CLS]) is
  # used as the "sentence vector". Note that this only makes sense because
  # the entire model is fine-tuned.
  tokens = []
  segment_ids = []
  tokens.append("[CLS]")
1229
  segment_ids.append(seg_id_cls)
1230
1231
  for token in tokens_a:
    tokens.append(token)
1232
    segment_ids.append(seg_id_a)
1233
  tokens.append("[SEP]")
1234
  segment_ids.append(seg_id_a)
1235
1236
1237
1238

  if tokens_b:
    for token in tokens_b:
      tokens.append(token)
1239
      segment_ids.append(seg_id_b)
1240
    tokens.append("[SEP]")
1241
    segment_ids.append(seg_id_b)
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

  input_ids = tokenizer.convert_tokens_to_ids(tokens)

  # The mask has 1 for real tokens and 0 for padding tokens. Only real
  # tokens are attended to.
  input_mask = [1] * len(input_ids)

  # Zero-pad up to the sequence length.
  while len(input_ids) < max_seq_length:
    input_ids.append(0)
    input_mask.append(0)
1253
    segment_ids.append(seg_id_pad)
1254
1255
1256
1257
1258

  assert len(input_ids) == max_seq_length
  assert len(input_mask) == max_seq_length
  assert len(segment_ids) == max_seq_length

Maxim Neumann's avatar
Maxim Neumann committed
1259
  label_id = label_map[example.label] if label_map else example.label
1260
1261
  if ex_index < 5:
    logging.info("*** Example ***")
1262
1263
1264
1265
1266
1267
    logging.info("guid: %s", (example.guid))
    logging.info("tokens: %s",
                 " ".join([tokenization.printable_text(x) for x in tokens]))
    logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
    logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
    logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1268
    logging.info("label: %s (id = %s)", example.label, str(label_id))
Maxim Neumann's avatar
Maxim Neumann committed
1269
    logging.info("weight: %s", example.weight)
Chen Chen's avatar
Chen Chen committed
1270
    logging.info("example_id: %s", example.example_id)
1271
1272
1273
1274
1275
1276

  feature = InputFeatures(
      input_ids=input_ids,
      input_mask=input_mask,
      segment_ids=segment_ids,
      label_id=label_id,
Maxim Neumann's avatar
Maxim Neumann committed
1277
      is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1278
      weight=example.weight,
Chen Chen's avatar
Chen Chen committed
1279
      example_id=example.example_id)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1280

1281
1282
1283
  return feature


stephenwu's avatar
stephenwu committed
1284
class AXgProcessor(DataProcessor):
stephenwu's avatar
stephenwu committed
1285
  """Processor for the AXg dataset (SuperGLUE diagnostics dataset)."""
stephenwu's avatar
stephenwu committed
1286
1287
1288
1289

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
stephenwu's avatar
stephenwu committed
1290
        self._read_jsonl(os.path.join(data_dir, "AX-g.jsonl")), "test")
stephenwu's avatar
stephenwu committed
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304

  def get_labels(self):
    """See base class."""
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "AXg"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training/dev/test sets."""
    examples = []
    for line in lines:
1305
      guid = "%s-%s" % (set_type, self.process_text_fn(str(line["idx"])))
stephenwu's avatar
stephenwu committed
1306
1307
      text_a = self.process_text_fn(line["premise"])
      text_b = self.process_text_fn(line["hypothesis"])
stephenwu's avatar
stephenwu committed
1308
1309
1310
1311
      label = self.process_text_fn(line["label"])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples
1312

1313

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1314
1315
class SuperGLUEDataProcessor(DataProcessor):
  """Processor for the SuperGLUE dataset."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_jsonl(os.path.join(data_dir, "train.jsonl")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_jsonl(os.path.join(data_dir, "val.jsonl")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_jsonl(os.path.join(data_dir, "test.jsonl")), "test")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1332
1333
1334
1335
1336
1337
1338
1339
  def _create_examples(self, lines, set_type):
    """Creates examples for the training/dev/test sets."""
    raise NotImplementedError()


class BoolQProcessor(SuperGLUEDataProcessor):
  """Processor for the BoolQ dataset (SuperGLUE diagnostics dataset)."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
  def get_labels(self):
    """See base class."""
    return ["True", "False"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "BoolQ"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training/dev/test sets."""
    examples = []
    for line in lines:
      guid = "%s-%s" % (set_type, self.process_text_fn(str(line["idx"])))
      text_a = self.process_text_fn(line["question"])
      text_b = self.process_text_fn(line["passage"])
      if set_type == "test":
        label = "False"
      else:
        label = str(line["label"])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1365
class CBProcessor(SuperGLUEDataProcessor):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
  """Processor for the CB dataset (SuperGLUE diagnostics dataset)."""

  def get_labels(self):
    """See base class."""
    return ["entailment", "neutral", "contradiction"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "CB"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training/dev/test sets."""
    examples = []
    for line in lines:
      guid = "%s-%s" % (set_type, self.process_text_fn(str(line["idx"])))
      text_a = self.process_text_fn(line["premise"])
      text_b = self.process_text_fn(line["hypothesis"])
      if set_type == "test":
        label = "entailment"
      else:
        label = self.process_text_fn(line["label"])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1393
class SuperGLUERTEProcessor(SuperGLUEDataProcessor):
stephenwu's avatar
stephenwu committed
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
  """Processor for the RTE dataset (SuperGLUE version)."""

  def get_labels(self):
    """See base class."""
    # All datasets are converted to 2-class split, where for 3-class datasets we
    # collapse neutral and contradiction into not_entailment.
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "RTESuperGLUE"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training/dev/test sets."""
    examples = []
    for i, line in enumerate(lines):
      guid = "%s-%s" % (set_type, i)
1412
1413
      text_a = self.process_text_fn(line["premise"])
      text_b = self.process_text_fn(line["hypothesis"])
stephenwu's avatar
stephenwu committed
1414
1415
1416
      if set_type == "test":
        label = "entailment"
      else:
1417
        label = self.process_text_fn(line["label"])
stephenwu's avatar
stephenwu committed
1418
1419
1420
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples
stephenwu's avatar
stephenwu committed
1421

1422

Tianqi Liu's avatar
Tianqi Liu committed
1423
1424
1425
1426
1427
1428
def file_based_convert_examples_to_features(examples,
                                            label_list,
                                            max_seq_length,
                                            tokenizer,
                                            output_file,
                                            label_type=None):
1429
1430
  """Convert a set of `InputExample`s to a TFRecord file."""

1431
  tf.io.gfile.makedirs(os.path.dirname(output_file))
1432
1433
  writer = tf.io.TFRecordWriter(output_file)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1434
  for ex_index, example in enumerate(examples):
1435
    if ex_index % 10000 == 0:
1436
      logging.info("Writing example %d of %d", ex_index, len(examples))
1437
1438
1439
1440
1441
1442
1443

    feature = convert_single_example(ex_index, example, label_list,
                                     max_seq_length, tokenizer)

    def create_int_feature(values):
      f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
      return f
Tianqi Liu's avatar
Tianqi Liu committed
1444

Maxim Neumann's avatar
Maxim Neumann committed
1445
1446
1447
    def create_float_feature(values):
      f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
      return f
1448
1449
1450
1451
1452

    features = collections.OrderedDict()
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)
Maxim Neumann's avatar
Maxim Neumann committed
1453
1454
    if label_type is not None and label_type == float:
      features["label_ids"] = create_float_feature([feature.label_id])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1455
    elif feature.label_id is not None:
Maxim Neumann's avatar
Maxim Neumann committed
1456
      features["label_ids"] = create_int_feature([feature.label_id])
1457
1458
    features["is_real_example"] = create_int_feature(
        [int(feature.is_real_example)])
Maxim Neumann's avatar
Maxim Neumann committed
1459
1460
    if feature.weight is not None:
      features["weight"] = create_float_feature([feature.weight])
Chen Chen's avatar
Chen Chen committed
1461
1462
1463
1464
    if feature.example_id is not None:
      features["example_id"] = create_int_feature([feature.example_id])
    else:
      features["example_id"] = create_int_feature([ex_index])
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  writer.close()


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
  """Truncates a sequence pair in place to the maximum length."""

  # This is a simple heuristic which will always truncate the longer sequence
  # one token at a time. This makes more sense than truncating an equal percent
  # of tokens from each, since if one sequence is very short then each token
  # that's truncated likely contains more information than a longer sequence.
  while True:
    total_length = len(tokens_a) + len(tokens_b)
    if total_length <= max_length:
      break
    if len(tokens_a) > len(tokens_b):
      tokens_a.pop()
    else:
      tokens_b.pop()


def generate_tf_record_from_data_file(processor,
                                      data_dir,
1490
                                      tokenizer,
1491
1492
                                      train_data_output_path=None,
                                      eval_data_output_path=None,
Tianqi Liu's avatar
Tianqi Liu committed
1493
                                      test_data_output_path=None,
1494
                                      max_seq_length=128):
1495
1496
  """Generates and saves training data into a tf record file.

1497
  Args:
1498
1499
      processor: Input processor object to be used for generating data. Subclass
        of `DataProcessor`.
1500
      data_dir: Directory that contains train/eval/test data to process.
1501
      tokenizer: The tokenizer to be applied on the data.
1502
1503
1504
1505
      train_data_output_path: Output to which processed tf record for training
        will be saved.
      eval_data_output_path: Output to which processed tf record for evaluation
        will be saved.
Tianqi Liu's avatar
Tianqi Liu committed
1506
      test_data_output_path: Output to which processed tf record for testing
Tianqi Liu's avatar
Tianqi Liu committed
1507
1508
        will be saved. Must be a pattern template with {} if processor has
        language specific test data.
1509
1510
1511
1512
1513
1514
1515
1516
1517
      max_seq_length: Maximum sequence length of the to be generated
        training/eval data.

  Returns:
      A dictionary containing input meta data.
  """
  assert train_data_output_path or eval_data_output_path

  label_list = processor.get_labels()
Maxim Neumann's avatar
Maxim Neumann committed
1518
1519
  label_type = getattr(processor, "label_type", None)
  is_regression = getattr(processor, "is_regression", False)
Maxim Neumann's avatar
Maxim Neumann committed
1520
  has_sample_weights = getattr(processor, "weight_key", False)
Maxim Neumann's avatar
Maxim Neumann committed
1521

stephenwu's avatar
stephenwu committed
1522
1523
1524
  num_training_data = 0
  if train_data_output_path:
    train_input_data_examples = processor.get_train_examples(data_dir)
stephenwu's avatar
stephenwu committed
1525
1526
1527
1528
    file_based_convert_examples_to_features(train_input_data_examples,
                                            label_list, max_seq_length,
                                            tokenizer, train_data_output_path,
                                            label_type)
stephenwu's avatar
stephenwu committed
1529
    num_training_data = len(train_input_data_examples)
1530
1531
1532
1533
1534

  if eval_data_output_path:
    eval_input_data_examples = processor.get_dev_examples(data_dir)
    file_based_convert_examples_to_features(eval_input_data_examples,
                                            label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1535
1536
                                            tokenizer, eval_data_output_path,
                                            label_type)
1537

1538
1539
1540
1541
1542
1543
  meta_data = {
      "processor_type": processor.get_processor_name(),
      "train_data_size": num_training_data,
      "max_seq_length": max_seq_length,
  }

Tianqi Liu's avatar
Tianqi Liu committed
1544
1545
1546
1547
1548
  if test_data_output_path:
    test_input_data_examples = processor.get_test_examples(data_dir)
    if isinstance(test_input_data_examples, dict):
      for language, examples in test_input_data_examples.items():
        file_based_convert_examples_to_features(
Tianqi Liu's avatar
Tianqi Liu committed
1549
1550
            examples, label_list, max_seq_length, tokenizer,
            test_data_output_path.format(language), label_type)
1551
        meta_data["test_{}_data_size".format(language)] = len(examples)
Tianqi Liu's avatar
Tianqi Liu committed
1552
1553
1554
    else:
      file_based_convert_examples_to_features(test_input_data_examples,
                                              label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1555
1556
                                              tokenizer, test_data_output_path,
                                              label_type)
1557
      meta_data["test_data_size"] = len(test_input_data_examples)
Tianqi Liu's avatar
Tianqi Liu committed
1558

Maxim Neumann's avatar
Maxim Neumann committed
1559
1560
1561
1562
1563
1564
  if is_regression:
    meta_data["task_type"] = "bert_regression"
    meta_data["label_type"] = {int: "int", float: "float"}[label_type]
  else:
    meta_data["task_type"] = "bert_classification"
    meta_data["num_labels"] = len(processor.get_labels())
Maxim Neumann's avatar
Maxim Neumann committed
1565
1566
  if has_sample_weights:
    meta_data["has_sample_weights"] = True
1567
1568
1569
1570
1571

  if eval_data_output_path:
    meta_data["eval_data_size"] = len(eval_input_data_examples)

  return meta_data